|
1
|
Center MM, Jemal A and Ward E:
International trends in colorectal cancer incidence rates. Cancer
Epidemiol Biomarkers Prev. 18:1688–1694. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Center MM, Jemal A, Smith RA and Ward E:
Worldwide variations in colorectal cancer. CA Cancer J Clin.
59:366–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel R, Ward E, Brawley O and Jemal A:
Cancer statistics, 2011: The impact of eliminating socioeconomic
and racial disparities on premature cancer deaths. CA Cancer J
Clin. 61:212–236. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Coppedè F, Lopomo A, Spisni R and Migliore
L: Genetic and epigenetic biomarkers for diagnosis, prognosis and
treatment of colorectal cancer. World J Gastroenterol. 20:943–956.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang
Z and Wei W: Targeting the ubiquitin pathway for cancer treatment.
Biochim Biophys Acta. 1855:50–60. 2015.
|
|
7
|
Genschik P, Sumara I and Lechner E: The
emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular
functions and disease implications. EMBO J. 32:2307–2320. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jadhav T and Wooten WM: Defining an
embedded code for protein ubiquitination. J Proteomics Bioinform.
2:316–333. 2009. View Article : Google Scholar
|
|
9
|
Okamoto Y, Ozaki T, Miyazaki K, Aoyama M,
Miyazaki M and Nakagawara A: UbcH10 is the cancer-related E2
ubiquitin-conjugating enzyme. Cancer Res. 63:4167–4173.
2003.PubMed/NCBI
|
|
10
|
Hou YC: Role of E3 ubiquitin ligases in
gastric cancer. World J Gastroenterol. 21:786–793. 2015.PubMed/NCBI
|
|
11
|
Zheng N, Schulman BA, Song L, et al:
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin
ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nakayama KI and Nakayama K: Ubiquitin
ligases: Cell-cycle control and cancer. Nat Rev Cancer. 6:369–381.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Santra MK, Wajapeyee N and Green MR: F-box
protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest
after DNA damage. Nature. 459:722–725. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Agami R and Bernards R: Distinct
initiation and maintenance mechanisms cooperate to induce G1 cell
cycle arrest in response to DNA damage. Cell. 102:55–66. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Okabe H, Lee SH, Phuchareon J, Albertson
DG, McCormick F and Tetsu O: A critical role for FBXW8 and MAPK in
cyclin D1 degradation and cancer cell proliferation. PLoS One.
1:e1282006. View Article : Google Scholar
|
|
16
|
Kumar R, Neilsen PM, Crawford J, et al:
FBXO31 is the chromosome 16q24.3 senescence gene, a candidate
breast tumor suppressor, and a component of an SCF complex. Cancer
Res. 65:11304–11313. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Huang HL, Zheng WL, Zhao R, Zhang B and Ma
WL: FBXO31 is down-regulated and may function as a tumor suppressor
in hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI
|
|
18
|
Zhang X, Kong Y, Xu X, et al: F-box
protein FBXO31 is down-regulated in gastric cancer and negatively
regulated by miR-17 and miR-20a. Oncotarget. 5:6178–6190.
2014.PubMed/NCBI
|
|
19
|
Kogo R, Mimori K, Tanaka F, Komune S and
Mori M: FBXO31 determines poor prognosis in esophageal squamous
cell carcinoma. Int J Oncol. 39:155–159. 2011.PubMed/NCBI
|
|
20
|
Zhang H, Kobayashi R, Galaktionov K and
Beach D: p19Skp1 and p45Skp2 are essential
elements of the cyclin A-CDK2 S phase kinase. Cell. 82:915–925.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hershko D, Bornstein G, Ben-Izhak O,
Carrano A, Pagano M, Krausz MM and Hershko A: Inverse relation
between levels of p27(Kip1) and of its ubiquitin ligase subunit
Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mori M, Mimori K, Shiraishi T, Tanaka S,
Ueo H, Sugimachi K and Akiyoshi T: p27 expression and gastric
carcinoma. Nat med. 3:5931997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fukuchi M, Masuda N, Nakajima M, Fukai Y,
Miyazaki T, Kato H and Kuwano H: Inverse correlation between
expression levels of p27 and the ubiquitin ligase subunit Skp2 in
early esophageal squamous cell carcinoma. Anticancer Res.
24:777–783. 2004.PubMed/NCBI
|
|
24
|
Masuda TA, Inoue H, Sonoda H, Mine S,
Yoshikawa Y, Nakayama K, Nakayama K and Mori M: Clinical and
biological significance of S-phase kinase-associated protein 2
(Skp2) gene expression in gastric carcinoma: modulation of
malignant phenotype by Skp2 overexpression, possibly via p27
proteolysis. Cancer Res. 62:3819–3825. 2002.PubMed/NCBI
|
|
25
|
Yang G, Ayala G, De marzo A, Tian W,
Frolov A, Wheeler TM, Thompson TC and Harper JW: Elevated Skp2
protein expression in human prostate cancer: Association with loss
of the cyclin-dependent kinase inhibitor p27 and PTEN and with
reduced recurrence-free survival. Clin Cancer Res. 8:3419–3426.
2002.PubMed/NCBI
|
|
26
|
Lu M, Ma J, Xue W, et al: The expression
and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma.
Pathol Oncol Res. 15:679–687. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rose AE, Wang G, Hanniford D, et al:
Clinical relevance of SKP2 alterations in metastatic melanoma.
Pigment Cell melanoma Res. 24:197–206. 2011. View Article : Google Scholar
|
|
28
|
Tosco P, La Terra Maggiore GM, Forni P,
Berrone S, Chiusa L and Garzino-Demo P: Correlation between Skp2
expression and nodal metastasis in stage I and II oral squamous
cell carcinomas. Oral Dis. 17:102–108. 2011. View Article : Google Scholar
|
|
29
|
Einama T, Kagata Y, Tsuda H, et al:
High-level Skp2 expression in pancreatic ductal adenocarcinoma:
Correlation with the extent of lymph node metastasis, higher
histological grade, and poorer patient outcome. Pancreas.
32:376–381. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Voduc D, Nielsen TO, Cheang MC and Foulkes
WD: The combination of high cyclin E and Skp2 expression in breast
cancer is associated with a poor prognosis and the basal phenotype.
Hum Pathol. 39:1431–1437. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhu CQ, Blackhall FH, Pintilie M, et al:
Skp2 gene copy number aberrations are common in non-small cell lung
carcinoma, and its overexpression in tumors with ras mutation is a
poor prognostic marker. Clin Cancer Res. 10:1984–1991. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gstaiger M, Jordan R, Lim M, Catzavelos C,
Mestan J, Slingerland J and Krek W: Skp2 is oncogenic and
overexpressed in human cancers. Proc Natl Acad Sci USA.
98:5043–5048. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Latres E, Chiarle R, Schulman BA,
Pavletich NP, Pellicer A, Inghirami G and Pagano M: Role of the
F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA.
98:2515–2520. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dowen SE, Scott A, Mukherjee G and Stanley
MA: Overexpression of Skp2 in carcinoma of the cervix does not
correlate inversely with p27 expression. Int J Cancer. 105:326–330.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hershko DD and Shapira M: Prognostic role
of p27Kip1 deregulation in colorectal cancer. Cancer.
107:668–675. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shapira M, Ben-Izhak O, Bishara B, et al:
Alterations in the expression of the cell cycle regulatory protein
cyclin kinase subunit 1 in colorectal carcinoma. Cancer.
100:1615–1621. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li JQ, Wu F, Masaki T, Kubo A, Fujita J,
Dixon DA, Beauchamp RD, Ishida T, Kuriyama S and Imaida K:
Correlation of Skp2 with carcinogenesis, invasion, metastasis, and
prognosis in colorectal tumors. Int J Oncol. 25:87–95.
2004.PubMed/NCBI
|
|
38
|
Shapira M, Ben-Izhak O, Linn S, Futerman
B, Minkov I and Hershko DD: The prognostic impact of the ubiquitin
ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer.
103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu SY, Wang F, Wei G, et al: S-phase
kinase-associated protein 2 knockdown blocks colorectal cancer
growth via regulation of both p27 and p16 expression. Cancer Gene
Ther. 20:690–694. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hristova NR, Tagscherer KE, Fassl A,
Kopitz J and Roth W: Notch1-dependent regulation of p27 determines
cell fate in colorectal cancer. Int J Oncol. 43:1967–1975.
2013.PubMed/NCBI
|
|
41
|
Tian YF, Chen TJ, Lin CY, et al: SKP2
overexpression is associated with a poor prognosis of rectal cancer
treated with chemoradiotherapy and represents a therapeutic target
with high potential. Tumour Biol. 34:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Vedin LL, Gustafsson JÅ and Steffensen KR:
The oxysterol receptors LXRα and LXRβ suppress proliferation in the
colon. Mol Carcinog. 52:835–844. 2013. View Article : Google Scholar
|
|
43
|
Wang Q, Zhou Y, Wang X and Evers BM:
p27Kip1 nuclear localization and cyclin-dependent kinase
inhibitory activity are regulated by glycogen synthase kinase-3 in
human colon cancer cells. Cell Death Differ. 15:908–919. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nishida N, Nagasaka T, Kashiwagi K, Boland
CR and Goel A: High copy amplification of the Aurora-A gene is
associated with chromosomal instability phenotype in human
colorectal cancers. Cancer Biol Ther. 6:525–533. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kleivi K, Lind GE, Diep CB, et al: Gene
expression profiles of primary colorectal carcinomas, liver
metastases, and carcinomatoses. Mol Cancer. 6:22007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhu J, Li K, Dong L and Chen Y: Role of
FBXL20 in human colorectal adenocarcinoma. Oncol Rep. 28:2290–2298.
2012.PubMed/NCBI
|
|
47
|
Zhu J, Deng S, Duan J, Xie X, Xu S, Ran M,
Dai X, Pu Y and Zhang X: FBXL20 acts as an invasion inducer and
mediates E-cadherin in colorectal adenocarcinoma. Oncol Lett.
7:2185–2191. 2014.PubMed/NCBI
|
|
48
|
Shirane M, Hatakeyama S, Hattori K and
Nakayama K and Nakayama K: Common pathway for the ubiquitination of
IkappaBalpha, IkappaBbeta, and IkappaBepsilon mediated by the F-box
protein FWD1. J Biol Chem. 274:28169–28174. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Spiegelman VS, Slaga TJ, Pagano M,
Minamoto T, Ronai Z and Fuchs SY: Wnt/beta-catenin signaling
induces the expression and activity of betaTrCP ubiquitin ligase
receptor. Mol Cell. 5:877–882. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang N, Wei P, Gong A, et al: Foxm1
promotes β-catenin nuclear localization and controls Wnt
target-gene expression and glioma tumorigenesis. Cancer Cell.
20:427–442. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mokkapati S, Niopek K, Huang L, Cunniff
KJ, Ruteshouser EC, deCaestecker M, Finegold MJ and Huff V:
β-catenin activation in a novel liver progenitor cell type is
sufficient to cause hepatocellular carcinoma and hepatoblastoma.
Cancer Res. 74:4515–4525. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM
and Zhou BP: Stabilization of snail by NF-kappa B is required for
inflammation-induced cell migration and invasion. Cancer Cell.
15:416–428. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guardavaccaro D, Kudo Y, Boulaire J,
Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK,
Yamasaki L and Pagano M: Control of meiotic and mitotic progression
by the F box protein beta-Trcp1 in vivo. Dev Cell. 4:799–812. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kanarek N, Horwitz E, Mayan I, Leshets M,
Cojocaru G, Davis M, Tsuberi BZ, Pikarsky E, Pagano M and
Ben-Neriah Y: Spermatogenesis rescue in a mouse deficient for the
ubiquitin ligase SCFβ-TrCP by single substrate
depletion. Genes Dev. 24:470–477. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ougolkov A, Zhang B, Yamashita K, Bilim V,
Mai M, Fuchs SY and Minamoto T: Associations among beta-TrCP, an E3
ubiquitin ligase receptor, beta-catenin, and NF-kappaB in
colorectal cancer. J Natl Cancer Inst. 96:1161–1170. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Koch A, Waha A, Hartmann W, Hrychyk A,
Schüller U, Waha A, Wharton KA Jr, Fuchs SY, von Schweinitz D and
Pietsch T: Elevated expression of Wnt antagonists is a common event
in hepatoblastomas. Clin Cancer Res. 11:4295–4304. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Müerköster S, Arlt A, Sipos B, Witt M,
Grossmann M, Klöppel G, Kalthoff H, Fölsch UR and Schäfer H:
Increased expression of the E3-ubiquitin ligase receptor subunit
betaTRCP1 relates to constitutive nuclear factor-kappaB activation
and chemoresistance in pancreatic carcinoma cells. Cancer Res.
65:1316–1324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu J, Suresh Kumar KG, Yu D, Molton SA,
McMahon M, Herlyn M, Thomas-Tikhonenko A and Fuchs SY: Oncogenic
BRAF regulates beta-Trcp expression and NF-kappaB activity in human
melanoma cells. Oncogene. 26:1954–1958. 2007. View Article : Google Scholar :
|
|
59
|
Yaron A, Hatzubai A, Davis M, Lavon I,
Amit S, Manning AM, Andersen JS, Mann M, Mercurio F and Ben-Neriah
Y: Identification of the receptor component of the
IkappaBalpha-ubiquitin ligase. Nature. 396:590–594. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tsai WB, Chung YM, Zou Y, Park SH, Xu Z,
Nakayama K, Lin SH and Hu MC: Inhibition of FOXO3 tumor suppressor
function by betaTrCP1 through ubiquitin-mediated degradation in a
tumor mouse model. PLoS One. 5:e111712010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nakayama K, Hatakeyama S, Maruyama S,
Kikuchi A, Onoé K, Good RA and Nakayama KI: Impaired degradation of
inhibitory subunit of NF-kappa B (I kappa B) and beta-catenin as a
result of targeted disruption of the beta-TrCP1 gene. Proc Natl
Acad Sci USA. 100:8752–8757. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Saitoh T and Katoh M: Expression profiles
of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric
cancer. Int J Oncol. 18:959–964. 2001.PubMed/NCBI
|
|
63
|
Kim CJ, Song JH, Cho YG, Kim YS, Kim SY,
Nam SW, Yoo NJ, Lee JY and Park WS: Somatic mutations of the
beta-TrCP gene in gastric cancer. APMIS. 115:127–133. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hartwell LH, Mortimer RK, Culotti J and
Culotti M: Genetic control of the cell division cycle in yeast: V.
genetic analysis of cdc mutants. Genetics. 74:267–286.
1973.PubMed/NCBI
|
|
65
|
Strohmaier H, Spruck CH, Kaiser P, Won KA,
Sangfelt O and Reed SI: Human F-box protein hCdc4 targets cyclin E
for proteolysis and is mutated in a breast cancer cell line.
Nature. 413:316–322. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Spruck CH, Strohmaier H, Sangfelt O,
Müller HM, Hubalek M, Müller-Holzner E, Marth C, Widschwendter B
and Reed SI: hCDC4 gene mutations in endometrial cancer. Cancer
Res. 62:4535–4539. 2002.PubMed/NCBI
|
|
67
|
Matsumoto A, Onoyama I and Nakayama KI:
Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or
p53-dependent manner. Biochem Biophys Res Commun. 350:114–119.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Welcker M, Orian A, Grim JE, Eisenman RN
and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase
regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Crusio KM, King B, Reavie LB and Aifantis
I: The ubiquitous nature of cancer: The role of the
SCFFbw7 complex in development and transformation.
Oncogene. 29:4865–4873. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mao JH, Perez-Losada J, Wu D, Delrosario
R, Tsunematsu R, Nakayama KI, Brown K, Bryson S and Balmain A:
Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor
gene. Nature. 432:775–779. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Grim JE, Knoblaugh SE, Guthrie KA, et al:
Fbw7 and p53 cooperatively suppress advanced and chromosomally
unstable intestinal cancer. Mol Cell Biol. 32:2160–2167. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rajagopalan H, Jallepalli PV, Rago C,
Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C:
Inactivation of hCDC4 can cause chromosomal instability. Nature.
428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Stamatakos M, Palla V, Karaiskos I,
Xiromeritis K, Alexiou I, Pateras I and Kontzoglou K: Cell cyclins:
Triggering elements of cancer or not? World J Surg Oncol.
8:1112010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Buckley MF, Sweeney KJ, Hamilton JA, Sini
RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA and
Sutherland RL: Expression and amplification of cyclin genes in
human breast cancer. Oncogene. 8:2127–2133. 1993.PubMed/NCBI
|
|
75
|
Shinozaki H, Ozawa S, Ando N, Tsuruta H,
Terada M, Ueda M and Kitajima M: Cyclin D1 amplification as a new
predictive classification for squamous cell carcinoma of the
esophagus, adding gene information. Clin Cancer Res. 2:1155–1161.
1996.PubMed/NCBI
|
|
76
|
Ikeguchi M, Sakatani T, Ueta T and Kaibara
N: Cyclin D1 expression and retinoblastoma gene protein (pRB)
expression in esophageal squamous cell carcinoma. J Cancer Res Clin
Oncol. 127:531–536. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sionov RV, Netzer E and Shaulian E:
Differential regulation of FBXW7 isoforms by various stress
stimuli. Cell Cycle. 12:3547–3554. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Grim JE, Gustafson m P, Hirata RK, Hagar
AC, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW and
Clurman BE: Isoform- and cell cycle-dependent substrate degradation
by the Fbw7 ubiquitin ligase. J Cell Biol. 181:913–920. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Van Drogen F, Sangfelt O, Malyukova A,
Matskova L, Yeh E, Means AR and Reed SI: Ubiquitylation of cyclin E
requires the sequential function of SCF complexes containing
distinct hCdc4 isoforms. Mol Cell. 23:37–48. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sangfelt O, Cepeda D, Malyukova A, van
Drogen F and Reed SI: Both SCFCdc4alpha and
SCFCdc4gamma are required for cyclin E turnover in cell
lines that do not overexpress cyclin E. Cell Cycle. 7:1075–1082.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tang X, Orlicky S, Lin Z, Willems A,
Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F and
Tyers M: Suprafacial orientation of the SCFCdc4 dimer
accommodates multiple geometries for substrate ubiquitination.
Cell. 129:1165–1176. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Welcker M and Clurman BE: Fbw7/hCDC4
dimerization regulates its substrate interactions. Cell Div.
2:72007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Iwatsuki M, Mimori K, Ishii H, et al: Loss
of FBXW7, a cell cycle regulating gene, in colorectal cancer:
Clinical significance. Int J Cancer. 126:1828–1837. 2010.
|
|
84
|
Fukushima H, Matsumoto A, Inuzuka H, et
al: SCFFbw7 modulates the NFκB signaling pathway by
targeting NFκB2 for ubiquitination and destruction. Cell Rep.
1:434–443. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Guo Z, Zhou Y, Evers BM and Wang Q: Rictor
regulates FBXW7-dependent c-Myc and cyclin E degradation in
colorectal cancer cells. Biochem Biophys Res Commun. 418:426–432.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang Y, Liu Y, Lu J, Zhang P, Wang Y, Xu
Y, Wang Z, Mao JH and Wei G: Rapamycin inhibits FBXW7 loss-induced
epithelial-mesenchymal transition and cancer stem cell-like
characteristics in colorectal cancer cells. Biochem Biophys Res
Commun. 434:352–356. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Tetzlaff MT, Yu W, Li M, Zhang P, Finegold
M, Mahon K, Harper JW, Schwartz RJ and Elledge SJ: Defective
cardiovascular development and elevated cyclin E and Notch proteins
in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA.
101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sancho R, Jandke A, Davis H, Diefenbacher
ME, Tomlinson I and Behrens A: F-box and WD repeat
domain-containing 7 regulates intestinal cell lineage commitment
and is a haploinsufficient tumor suppressor. Gastroenterology.
139:929–941. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Babaei-Jadidi R, Li N, Saadeddin A, et al:
FBXW7 influences murine intestinal homeostasis and cancer,
targeting Notch, Jun, and DEK for degradation. J Exp med.
208:295–312. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Davis H, Lewis A, Behrens A and Tomlinson
I: Investigation of the atypical FBXW7 mutation spectrum in human
tumours by conditional expression of a heterozygous propellor tip
missense allele in the mouse intestines. Gut. 63:792–799. 2014.
View Article : Google Scholar :
|
|
91
|
Jahid S, Sun J, Edwards RA, Dizon D,
Panarelli NC, Milsom JW, Sikandar SS, Gümüs ZH and Lipkin SM:
miR-23a promotes the transition from indolent to invasive
colorectal cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Akhoondi S, Lindström L, Widschwendter M,
Corcoran M, Bergh J, Spruck C, Grandér D and Sangfelt O:
Inactivation of FBXW7/hCDC4-β expression by promoter
hypermethylation is associated with favorable prognosis in primary
breast cancer. Breast Cancer Res. 12:R1052010. View Article : Google Scholar
|
|
93
|
Kemp Z, Rowan A, Chambers W, et al: CDC4
mutations occur in a subset of colorectal cancers but are not
predicted to cause loss of function and are not associated with
chromosomal instability. Cancer Res. 65:11361–11366. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mouradov D, Domingo E, Gibbs P, et al:
Survival in stage II/III colorectal cancer is independently
predicted by chromosomal and microsatellite instability, but not by
specific driver mutations. Am J Gastroenterol. 108:1785–1793. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Miyaki M, Yamaguchi T, Iijima T, Takahashi
K, Matsumoto H and Mori T: Somatic mutations of the CDC4 (FBXW7)
gene in hereditary colorectal tumors. Oncology. 76:430–434. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Voorham QJ, Carvalho B, Spiertz AJ, et al:
Comprehensive mutation analysis in colorectal flat adenomas. PLoS
One. 7:e419632012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xie T, Cho YB, Wang K, et al: Patterns of
somatic alterations between matched primary and metastatic
colorectal tumors characterized by whole-genome sequencing.
Genomics. 104:234–241. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jardim DL, Wheler JJ, Hess K, et al: FBXW7
mutations in patients with advanced cancers: Clinical and molecular
characteristics and outcomes with mTOR inhibitors. PLoS One.
9:e893882014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sung JJ, Ng SC, Chan FK, et al: An updated
Asia Pacific Consensus Recommendations on colorectal cancer
screening. Gut. 64:121–132. 2015. View Article : Google Scholar
|
|
100
|
Wertz IE, Kusam S, Lam C, et al:
Sensitivity to antitubulin chemotherapeutics is regulated by mCL1
and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Alinari L, White VL, Earl CT, et al:
Combination bortezomib and rituximab treatment affects multiple
survival and death pathways to promote apoptosis in mantle cell
lymphoma. MAbs. 1:31–40. 2009. View Article : Google Scholar :
|
|
102
|
Kane RC, Bross PF, Farrell AT and Pazdur
R: Velcade: U.S. FDA approval for the treatment of multiple myeloma
progressing on prior therapy. Oncologist. 8:508–513. 2003.
View Article : Google Scholar : PubMed/NCBI
|