Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2015 Volume 33 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2015 Volume 33 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis

Retraction in: /10.3892/or.2025.9023
  • Authors:
    • Sha Liu
    • Xiaofen Pan
    • Qin Yang
    • Lu Wen
    • Yao Jiang
    • Yingchao Zhao
    • Guiling Li
  • View Affiliations / Copyright

    Affiliations: Cancer Center, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430023, P.R. China
  • Pages: 2853-2862
    |
    Published online on: April 27, 2015
       https://doi.org/10.3892/or.2015.3929
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Evidence has demonstrated that microRNAs (miRNAs) are important in the regulation of cellular radiosensitivity of various types of human cancer. The aim of this study was to examine the role of miR-18a in regulating the radiosensitivity of cervical cancer, in order to understand the underlying mechanism and to assess the potential of miR-18a as a biomarker for predicting radiosensitivity. The expression of miR-18a was investigated in 48 cervical cancer patients. The results revealed that miR-18a expression was significantly higher in radiosensitive patients than in radioresistant patients by RT-qPCR (P<0.05). Transient transfection experiments showed that miR-18a was upregulated by the miR-18a mimic and downregulated by the miR-18a inhibitor in the SiHa and HeLa cells. Without irradiation treatment, a similar growth was observed in the cells with or without transfection of miR-18a. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Hoechst staining assays showed that miR-18a had no effect on the proliferation and apoptosis of cervical cancer cells after transfection. However, the upregulation of miR-18a suppressed the level of ataxia-telangiectasia mutated and attenuated DNA double-strand break repair after irradiation, which re-sensitized the cervical cancer cells to radiotherapy by promoting apoptosis. Taken together, these results demonstrated that miR-18a is a potential molecule predictor of radiosensitivity in cervical cancer patients and played an important role in the response to radiotherapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Krieger N, Bassett MT and Gomez SL: Breast and cervical cancer in 187 countries between 1980 and 2010. Lancet. 379:1391–1392. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Rogers L, Siu SS, Luesley D, Bryant A and Dickinson HO: Radiotherapy and chemoradiation after surgery for early cervical cancer. Cochrane Database Syst Rev. 5:CD0075832012.PubMed/NCBI

4 

Yuan W, Xiaoyun H, Haifeng Q, Jing L, Weixu H, Ruofan D, Jinjin Y and Zongji S: MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int J Med Sci. 11:691–696. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Metheetrairut C and Slack FJ: MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 23:12–19. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Hummel R, Hussey DJ and Haier J: MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 46:298–311. 2010. View Article : Google Scholar

8 

Zhang B, Wang Q and Pan X: MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 210:279–289. 2007. View Article : Google Scholar

9 

Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X and Wu X: MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. 32:3019–3027. 2013. View Article : Google Scholar

10 

Chen HM, Hsu JH, Liou SF, Chen TJ, Chen LY, Chiu CC and Yeh JL: Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways. BMC Complement Altern Med. 14:2332014. View Article : Google Scholar : PubMed/NCBI

11 

Bourton EC, Plowman PN, Smith D, Arlett CF and Parris CN: Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer. 129:2928–2934. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Ohba S, Mukherjee J, See WL and Pieper RO: Mutant IDH1-driven cellular transformation increases RAD51-mediated homologous recombination and temozolomide resistance. Cancer Res. 74:4836–4844. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Song L, Lin C, Wu Z, Gong H, Zeng Y, Wu J, Li M and Li J: miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One. 6:e254542011. View Article : Google Scholar : PubMed/NCBI

14 

Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ and Yu J: MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One. 8:e570362013. View Article : Google Scholar : PubMed/NCBI

15 

Shiloh Y and Ziv Y: The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 14:197–210. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Borgstahl GE, Brader K, Mosel A, Liu S, Kremmer E, Goettsch KA, Kolar C, Nasheuer HP and Oakley GG: Interplay of DNA damage and cell cycle signaling at the level of human replication protein A. DNA Repair (Amst). 21:12–23. 2014. View Article : Google Scholar

17 

Bakkenist CJ and Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 421:499–506. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Nakano T, Kato S, Ohno T, Tsujii H, Sato S, Fukuhisa K and Arai T: Long-term results of high-dose rate intracavitary brachy-therapy for squamous cell carcinoma of the uterine cervix. Cancer. 103:92–101. 2005. View Article : Google Scholar

19 

Qi L, Xing LN, Wei X and Song SG: Effects of VEGF suppression by small hairpin RNA interference combined with radiotherapy on the growth of cervical cancer. Genet Mol Res. 13:5094–5106. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Tao J, Wu D, Li P, Xu B, Lu Q and Zhang W: microRNA-18a, a member of the oncogenic miR-17–92 cluster, targets Dicer and suppresses cell proliferation in bladder cancer T24 cells. Mol Med Rep. 5:167–172. 2012.

24 

Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, Chen DS and Chen PJ: MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology. 136:683–693. 2009. View Article : Google Scholar

25 

Fujiya M, Konishi H, Mohamed Kamel MK, Ueno N, Inaba Y, Moriichi K, Tanabe H, Ikuta K, Ohtake T and Kohgo Y: microRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene. 33:4847–4856. 2014. View Article : Google Scholar

26 

Luo Z, Dai Y, Zhang L, Jiang C, Li Z, Yang J, McCarthy JB, She X, Zhang W, Ma J, et al: miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopha-ryngeal carcinoma. Carcinogenesis. 34:415–425. 2013. View Article : Google Scholar

27 

Symington LS and Gautier J: Double-strand break end resection and repair pathway choice. Annu Rev Genet. 45:247–271. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Valdiglesias V, Giunta S, Fenech M, Neri M and Bonassi S: γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 753:24–40. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Kinner A, Wu W, Staudt C and Iliakis G: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36:5678–5694. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Hu H, Du L, Nagabayashi G, Seeger RC and Gatti RA: ATM is downregulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA. 107:1506–1511. 2010. View Article : Google Scholar

31 

Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo YY, Mao H, Hao C, Olson JJ, Curran WJ, et al: Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One. 5:e113972010. View Article : Google Scholar : PubMed/NCBI

32 

Ng WL, Yan D, Zhang X, Mo YY and Wang Y: Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 9:1170–1175. 2010. View Article : Google Scholar

33 

Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E and Slack FJ: MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 67:11111–11116. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Josson S, Sung SY, Lao K, Chung LW and Johnstone PA: Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 68:1599–1606. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z and Chun-Sheng K: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 10:3672010. View Article : Google Scholar : PubMed/NCBI

36 

Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ and Li GX: Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroenterol. 19:9307–9317. 2013. View Article : Google Scholar

37 

Huang S, Li XQ, Chen X, Che SM, Chen W and Zhang XZ: Inhibition of microRNA-21 increases radiosensitivity of esophageal cancer cells through phosphatase and tensin homolog deleted on chromosome 10 activation. Dis Esophagus. 26:823–831. 2013. View Article : Google Scholar

38 

Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P and Hu W: microRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep. 23:997–1003. 2010.PubMed/NCBI

39 

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Wu Y, Liu GL, Liu SH, Wang CX, Xu YL, Ying Y and Mao P: MicroRNA-148b enhances the radiosensitivity of non-Hodgkin’s lymphoma cells by promoting radiation-induced apoptosis. J Radiat Res (Tokyo). 53:516–525. 2012. View Article : Google Scholar

41 

Arora H, Qureshi R, Jin S, Park AK and Park WY: miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp Mol Med. 43:298–304. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM and Slack FJ: Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther. 12:908–914. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Zhang JX, Qian D, Wang FW, Liao DZ, Wei JH, Tong ZT, Fu J, Huang XX, Liao YJ, Deng HX, et al: MicroRNA-29c enhances the sensitivities of human nasopharyngeal carcinoma to cisplatin-based chemotherapy and radiotherapy. Cancer Lett. 329:91–98. 2013. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu S, Pan X, Yang Q, Wen L, Jiang Y, Zhao Y and Li G: MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023. Oncol Rep 33: 2853-2862, 2015.
APA
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., & Li, G. (2015). MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023. Oncology Reports, 33, 2853-2862. https://doi.org/10.3892/or.2015.3929
MLA
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., Li, G."MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023". Oncology Reports 33.6 (2015): 2853-2862.
Chicago
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., Li, G."MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023". Oncology Reports 33, no. 6 (2015): 2853-2862. https://doi.org/10.3892/or.2015.3929
Copy and paste a formatted citation
x
Spandidos Publications style
Liu S, Pan X, Yang Q, Wen L, Jiang Y, Zhao Y and Li G: MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023. Oncol Rep 33: 2853-2862, 2015.
APA
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., & Li, G. (2015). MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023. Oncology Reports, 33, 2853-2862. https://doi.org/10.3892/or.2015.3929
MLA
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., Li, G."MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023". Oncology Reports 33.6 (2015): 2853-2862.
Chicago
Liu, S., Pan, X., Yang, Q., Wen, L., Jiang, Y., Zhao, Y., Li, G."MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis Retraction in /10.3892/or.2025.9023". Oncology Reports 33, no. 6 (2015): 2853-2862. https://doi.org/10.3892/or.2015.3929
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team