SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer

  • Authors:
    • Kazuya Shinmura
    • Hisami Kato
    • Yuichi Kawanishi
    • Kiyoko Nagura
    • Takaharu Kamo
    • Yusuke Okubo
    • Yusuke Inoue
    • Nobuya Kurabe
    • Chunping Du
    • Moriya Iwaizumi
    • Kiyotaka Kurachi
    • Toshio Nakamura
    • Haruhiko Sugimura
  • View Affiliations

  • Published online on: May 28, 2015     https://doi.org/10.3892/or.2015.4014
  • Pages: 727-738
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Spindle assembly abnormal protein 6 homolog (SASS6) plays an important role in the regulation of centriole duplication. To date, the genetic alteration of SASS6 has not been reported in human cancers. In the present study, we examined whether SASS6 expression is abnormally regulated in colorectal cancers (CRCs). Increased SASS6 mRNA and protein expression levels were observed in 49 (60.5%) of the 81 primary CRCs and 11 (57.9%) of the 19 primary CRCs, respectively. Moreover, the upregulation of SASS6 mRNA expression was statistically significant (P=0.0410). Next, using DLD-1 colon cancer cells inducibly expressing SASS6, SASS6 overexpression was shown to induce centrosome amplification, mitotic abnormalities such as chromosomal misalignment and lagging chromosome, and chromosomal numerical changes. Furthermore, SASS6 overexpression was associated with anaphase bridge formation, a type of mitotic structural abnormality, in primary CRCs (P<0.01). SASS6 upregulation in colon cancer was also revealed in the Cancer Genome Atlas (TCGA) data and was shown to be an independent predictor of poor survival (multivariate analysis: hazard ratio, 2.805; 95% confidence interval, 1.244‑7.512; P=0.0112). Finally, further analysis of the TCGA data demonstrated SASS6 upregulation in a modest manner in 8 of 11 cancer types other than colon cancer, and SASS6 upregulation was found to be associated with a poor survival outcome in patients with kidney renal cell carcinoma and lung adenocarcinoma. Our present findings revealed that the upregulation of SASS6 expression is involved in the pathogenesis of CRC and is associated with a poor prognosis among patients with colon cancer. They also suggest that SASS6 upregulation is a genetic abnormality relatively common in human cancer.

References

1 

Thompson SL, Bakhoum SF and Compton DA: Mechanisms of chromosomal instability. Curr Biol. 20:R285–R295. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Pfau SJ and Amon A: Chromosomal instability and aneuploidy in cancer: From yeast to man. EMBO Rep. 13:515–527. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Yamada H, Hayama T, Inoue E, Tamura J, et al: Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol. 30:2256–2264. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Vincent-Salomon A, Benhamo V, Gravier E, Rigaill G, Gruel N, Robin S, de Rycke Y, Mariani O, Pierron G, Gentien D, et al: Genomic instability: A stronger prognostic marker than proliferation for early stage luminal breast carcinomas. PLoS One. 8:e764962013. View Article : Google Scholar : PubMed/NCBI

5 

Hveem TS, Merok MA, Pretorius ME, Novelli M, Bævre MS, Sjo OH, Clinch N, Liestøl K, Svindland A, Lothe RA, et al: Prognostic impact of genomic instability in colorectal cancer. Br J Cancer. 110:2159–2164. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Ganem NJ, Godinho SA and Pellman D: A mechanism linking extra centrosomes to chromosomal instability. Nature. 460:278–282. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Fukasawa K: Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer. 7:911–924. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Krämer A, Maier B and Bartek J: Centrosome clustering and chromosomal (in)stability: A matter of life and death. Mol Oncol. 5:324–335. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Nigg EA and Raff JW: Centrioles, centrosomes, and cilia in health and disease. Cell. 139:663–678. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Shinmura K and Sugimura H: Centrosome abnormality and human lung cancer. Lung Diseases - Selected State of the Art Reviews. Irusen EM: InTech; Rijeka: pp. 171–188. 2012

11 

Leidel S, Delattre M, Cerutti L, Baumer K and Gönczy P: SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol. 7:115–125. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Arquint C, Sonnen KF, Stierhof YD and Nigg EA: Cell-cycle-regulated expression of STIL controls centriole number in human cells. J Cell Sci. 125:1342–1352. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Lin YC, Chang CW, Hsu WB, Tang CJ, Lin YN, Chou EJ, Wu CT and Tang TK: Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J. 32:1141–1154. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Keller D, Orpinell M, Olivier N, Wachsmuth M, Mahen R, Wyss R, Hachet V, Ellenberg J, Manley S and Gönczy P: Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J Cell Biol. 204:697–712. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A and Gönczy P: Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell. 13:203–213. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Comartin D, Gupta GD, Fussner E, Coyaud É, Hasegan M, Archinti M, Cheung SW, Pinchev D, Lawo S, Raught B, et al: CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr Biol. 23:1360–1366. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Macmillan JC, Hudson JW, Bull S, Dennis JW and Swallow CJ: Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol. 8:729–740. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Liu L, Zhang CZ, Cai M, Fu J, Chen GG and Yun J: Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS One. 7:e412932012. View Article : Google Scholar : PubMed/NCBI

19 

Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR and Sen S: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 20:189–193. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Li J, Xuan JW, Khatamianfar V, Valiyeva F, Moussa M, Sadek A, Yang BB, Dong BJ, Huang YR and Gao WQ: SKA1 over-expression promotes centriole over-duplication, centrosome amplification and prostate tumourigenesis. J Pathol. 234:178–189. 2014.PubMed/NCBI

21 

Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, Matsuura S, Maeda M, Konno H, Matsuda T, et al: Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol. 225:414–423. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Shinmura K, Iwaizumi M, Igarashi H, Nagura K, Yamada H, Suzuki M, Fukasawa K and Sugimura H: Induction of centrosome amplification and chromosome instability in p53-deficient lung cancer cells exposed to benzo[a]pyrene diol epoxide (B[a]PDE). J Pathol. 216:365–374. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Li B and Dewey CN: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:3232011. View Article : Google Scholar : PubMed/NCBI

24 

Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, et al: Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 138:958–968. 2010. View Article : Google Scholar

25 

Ding S, Wu X, Li G, Han M, Zhuang Y and Xu T: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122:473–483. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Joshi HC: Microtubule organizing centers and gamma-tubulin. Curr Opin Cell Biol. 6:54–62. 1994. View Article : Google Scholar : PubMed/NCBI

27 

Oakley BR: gamma-Tubulin. Curr Top Dev Biol. 49:27–54. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, et al: Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar

29 

Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M, Mandahl N, Mertens F, Mitelman F and Gisselsson D: Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA. 102:5541–5546. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Chan JY: A clinical overview of centrosome amplification in human cancers. Int J Biol Sci. 7:1122–1144. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Yang SB, Zhou XB, Zhu HX, Quan LP, Bai JF, He J, Gao YN, Cheng SJ and Xu NZ: Amplification and overexpression of Aurora-A in esophageal squamous cell carcinoma. Oncol Rep. 17:1083–1088. 2007.PubMed/NCBI

32 

Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC and García-Manero G: Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 65:750–764. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Tsai KW, Hu LY, Chen TW, Li SC, Ho MR, Yu SY, Tu YT, Chen WS and Lam HC: Emerging role of microRNAs in modulating endothelin-1 expression in gastric cancer. Oncol Rep. 33:485–493. 2015.

34 

Thompson SL and Compton DA: Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci USA. 108:17974–17978. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Nigg EA and Stearns T: The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 13:1154–1160. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Nam HJ, Chae S, Jang SH, Cho H and Lee JH: The PI3K-Akt mediates oncogenic Met-induced centrosome amplification and chromosome instability. Carcinogenesis. 31:1531–1540. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Duensing S and Münger K: The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62:7075–7082. 2002.PubMed/NCBI

38 

Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K and Crabtree GR: BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature. 497:624–627. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E, et al: Replication stress links structural and numerical cancer chromosomal instability. Nature. 494:492–496. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Gisselsson D, Pettersson L, Höglund M, Heidenblad M, Gorunova L, Wiegant J, Mertens F, Dal Cin P, Mitelman F and Mandahl N: Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA. 97:5357–5362. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Théry M and Pellman D: Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 510:167–171. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Liu J, Cheng X, Zhang Y, Li S, Cui H, Zhang L, Shi R, Zhao Z, He C, Wang C, et al: Phosphorylation of Mps1 by BRAFV600E prevents Mps1 degradation and contributes to chromosome instability in melanoma. Oncogene. 32:713–723. 2013. View Article : Google Scholar

43 

Izumi H, Matsumoto Y, Ikeuchi T, Saya H, Kajii T and Matsuura S: BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells. Oncogene. 28:2806–2820. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2015
Volume 34 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shinmura, K., Kato, H., Kawanishi, Y., Nagura, K., Kamo, T., Okubo, Y. ... Sugimura, H. (2015). SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer. Oncology Reports, 34, 727-738. https://doi.org/10.3892/or.2015.4014
MLA
Shinmura, K., Kato, H., Kawanishi, Y., Nagura, K., Kamo, T., Okubo, Y., Inoue, Y., Kurabe, N., Du, C., Iwaizumi, M., Kurachi, K., Nakamura, T., Sugimura, H."SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer". Oncology Reports 34.2 (2015): 727-738.
Chicago
Shinmura, K., Kato, H., Kawanishi, Y., Nagura, K., Kamo, T., Okubo, Y., Inoue, Y., Kurabe, N., Du, C., Iwaizumi, M., Kurachi, K., Nakamura, T., Sugimura, H."SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer". Oncology Reports 34, no. 2 (2015): 727-738. https://doi.org/10.3892/or.2015.4014