|
1
|
Etzioni R, Urban N, Ramsey S, McIntosh M,
Schwartz S, Reid B, Radich J, Anderson G and Hartwell L: The case
for early detection. Nat Rev Cancer. 3:243–252. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Levenson VV: Biomarkers for early
detection of breast cancer: What, when, and where? Biochim Biophys
Acta. 1770:847–856. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Panieri E: Breast cancer screening in
developing countries. Best Pract Res Clin Obstet Gynaecol.
26:283–290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Desmetz C, Mange A, Maudelonde T and
Solassol J: Autoantibody signatures: Progress and perspectives for
early cancer detection. J Cell Mol Med. 15:2013–2024. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
WHO: Early detection of cancer. http://www.who.int/cancer/detection/en/.
|
|
6
|
Lu H, Goodell V and Disis ML: Humoral
immunity directed against tumor-associated antigens as potential
biomarkers for the early diagnosis of cancer. J Proteome Res.
7:1388–1394. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Disis ML, Pupa SM, Gralow JR, Dittadi R,
Menard S and Cheever MA: High-titer HER-2/neu protein-specific
antibody can be detected in patients with early-stage breast
cancer. J Clin Oncol. 15:3363–3367. 1997.PubMed/NCBI
|
|
8
|
Carter P, Smith L and Ryan M:
Identification and validation of cell surface antigens for antibody
targeting in oncology. Endocr Relat Cancer. 11:659–687. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
WHO: Breast cancer: prevention and
control. http://www.who.int/cancer/detection/breastcancer/en/.
|
|
10
|
Díaz-Zaragoza M, Hernández R and
Ostoa-Saloma P: 2D immunoblots show differential response of mouse
IgG and IgM antibodies to antigens of mammary carcinoma 4 T1 cells.
Cancer Cell Int. 14:92014. View Article : Google Scholar
|
|
11
|
Klimovich VB: IgM and its receptors:
Structural and functional aspects. Biochemistry (Mosc). 76:534–549.
2011. View Article : Google Scholar
|
|
12
|
Reynolds AE, Kuraoka M and Kelsoe G:
Natural IgM is produced by CD5− plasma cells that occupy
a distinct survival niche in bone marrow. J Immunol. 194:231–242.
2015. View Article : Google Scholar
|
|
13
|
Vollmers HP and Brändlein S: Natural
antibodies and cancer. N Biotechnol. 25:294–298. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brändlein S, Pohle T, Ruoff N, Wozniak E,
Müller-Hermelink HK and Vollmers HP: Natural IgM antibodies and
immunosurveillance mechanisms against epithelial cancer cells in
humans. Cancer Res. 63:7995–8005. 2003.PubMed/NCBI
|
|
15
|
Vollmers HP and Brändlein S: The 'early
birds': Natural IgM antibodies and immune surveillance. Histol
Histopathol. 20:927–937. 2005.PubMed/NCBI
|
|
16
|
Brändlein S, Eck M, Ströbel P, Wozniak E,
Müller-Hermelink HK, Hensel F and Vollmers HP: PAM-1, a natural
human IgM antibody as new tool for detection of breast and prostate
precursors. Hum Antibodies. 13:97–104. 2004.
|
|
17
|
Vollmers HP and Brändlein S: Death by
stress: Natural IgM-induced apoptosis. Methods Find Exp Clin
Pharmacol. 27:185–191. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Manson JJ, Mauri C and Ehrenstein MR:
Natural serum IgM maintains immunological homeostasis and prevents
autoimmunity. Springer Semin Immunopathol. 26:425–432. 2005.
View Article : Google Scholar
|
|
19
|
Racine R, McLaughlin M, Jones DD, Wittmer
ST, MacNamara KC, Woodland DL and Winslow GM: IgM production by
bone marrow plasmablasts contributes to long-term protection
against intracellular bacterial infection. J Immunol.
186:1011–1021. 2011. View Article : Google Scholar :
|
|
20
|
Bendtzen K, Hansen MB, Ross C and Svenson
M: High-avidity autoantibodies to cytokines. Immunol Today.
19:209–211. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Alberts B, Johnson A, Lewis J, Raff M,
Roberts K and Walter P: Molecular Biology of the Cell. B Cells and
Antibodies. 4th edition. Garland Science; New York, NY: 2002
|
|
22
|
Lim HW, Hillsamer P, Banham AH and Kim CH:
Cutting edge: Direct suppression of B cells by CD4+
CD25+ regulatory T cells. J Immunol. 175:4180–4183.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shaw PX, Hörkkö S, Chang MK, Curtiss LK,
Palinski W, Silverman GJ and Witztum JL: Natural antibodies with
the T15 idiotype may act in atherosclerosis, apoptotic clearance,
and protective immunity. J Clin Invest. 105:1731–1740. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang M, Austen WG Jr, Chiu I, Alicot EM,
Hung R, Ma M, Verna N, Xu M, Hechtman HB, Moore FD Jr, et al:
Identification of a specific self-reactive IgM antibody that
initiates intestinal ischemia/reperfusion injury. Proc Natl Acad
Sci USA. 101:3886–3891. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ray SK, Putterman C and Diamond B:
Pathogenic autoantibodies are routinely generated during the
response to foreign antigen: A paradigm for autoimmune disease.
Proc Natl Acad Sci USA. 93:2019–2024. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Casali P and Schettino EW: Structure and
function of natural antibodies. Curr Top Microbiol Immunol.
210:167–179. 1996.PubMed/NCBI
|
|
27
|
Coutinho A, Kazatchkine MD and Avrameas S:
Natural autoantibodies. Curr Opin Immunol. 7:812–818. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Panda S and Ding JL: Natural antibodies
bridge innate and adaptive immunity. J Immunol. 194:13–20. 2015.
View Article : Google Scholar
|
|
29
|
Lopes-Carvalho T and Kearney JF:
Development and selection of marginal zone B cells. Immunol Rev.
197:192–205. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Madi A, Hecht I, Bransburg-Zabary S, Merbl
Y, Pick A, Zucker-Toledano M, Quintana FJ, Tauber AI, Cohen IR and
Ben-Jacob E: Organization of the autoantibody repertoire in healthy
newborns and adults revealed by system level informatics of antigen
microarray data. Proc Natl Acad Sci USA. 106:14484–14489. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Merbl Y, Zucker-Toledano M, Quintana FJ
and Cohen IR: Newborn humans manifest autoantibodies to defined
self molecules detected by antigen microarray informatics. J Clin
Invest. 117:712–718. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schettino EW, Chai SK, Kasaian MT,
Schroeder HW Jr and Casali P: VHDJH gene sequences and antigen
reactivity of monoclonal antibodies produced by human B-1 cells:
Evidence for somatic selection. J Immunol. 158:2477–2489.
1997.PubMed/NCBI
|
|
33
|
Bohn J: Are natural antibodies involved in
tumour defence? Immunol Lett. 69:317–320. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Boes M: Role of natural and immune IgM
antibodies in immune responses. Mol Immunol. 37:1141–1149. 2000.
View Article : Google Scholar
|
|
35
|
Vollmers HP and Brändlein S: Natural IgM
antibodies: From parias to parvenus. Histol Histopathol.
21:1355–1366. 2006.PubMed/NCBI
|
|
36
|
Baumgarth N: The double life of a B-1
cell: Self-reactivity selects for protective effector functions.
Nat Rev Immunol. 11:34–46. 2011. View Article : Google Scholar
|
|
37
|
Nagele EP, Han M, Acharya NK, DeMarshall
C, Kosciuk MC and Nagele RG: Natural IgG autoantibodies are
abundant and ubiquitous in human sera, and their number is
influenced by age, gender, and disease. PLoS One. 8:e607262013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Boes M, Schmidt T, Linkemann K, Beaudette
BC, MarshakRothstein A and Chen J: Accelerated development of IgG
autoantibodies and autoimmune disease in the absence of secreted
IgM. Proc Natl Acad Sci USA. 97:1184–1189. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hensel F, Brändlein S, Eck M, Schmidt K,
Krenn V, Kloetzer A, Bachi A, Mann M, Müller-Hermelink HK and
Vollmers HP: A novel proliferation-associated variant of CFR-1
defined by a human monoclonal antibody. Lab Invest. 81:1097–1108.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hensel F, Hermann R, Schubert C, Abé N,
Schmidt K, Franke A, Shevchenko A, Mann M, Müller-Hermelink HK and
Vollmers HP: Characterization of glycosylphosphatidylinositollinked
molecule CD55/decay-accelerating factor as the receptor for
antibody SC-1-induced apoptosis. Cancer Res. 59:5299–5306.
1999.PubMed/NCBI
|
|
41
|
Rauschert N, Brändlein S, Holzinger E,
Hensel F, MüllerHermelink H-K and Vollmers HP: A new tumor-specifc
variant of GRP78 as target for antibody-based therapy. Lab Invest.
88:375–386. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kobata A and Amano J: Altered
glycosylation of proteins produced by malignant cells, and
application for the diagnosis and immunotherapy of tumours. Immunol
Cell Biol. 83:429–439. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Milner ECB, Anolik J, Cappione A and Sanz
I: Human innate B cells: A link between host defense and
autoimmunity? Springer Semin Immunopathol. 26:433–452. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Merino MC and Gruppi A: Origen y
desarrollo de linfocitos B1, una población celular involucrada en
defensa y autoinmunidad. Med (Buenos Aires). 165–172. 2006.
|
|
45
|
Notkins AL: Polyreactivity of antibody
molecules. Trends Immunol. 25:174–179. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhou Z-H, Tzioufas AG and Notkins AL:
Properties and function of polyreactive antibodies and polyreactive
antigen-binding B cells. J Autoimmun. 29:219–228. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Manz RA, Hauser AE, Hiepe F and Radbruch
A: Maintenance of serum antibody levels. Annu Rev Immunol.
23:367–386. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Baumgarth N, Chen J, Herman OC, Jager GC
and Herzenberg LA: The role of B-1 and B-2 cells in immune
protection from influenza virus infection. Curr Top Microbiol
Immunol. 252:163–169. 2000.PubMed/NCBI
|
|
49
|
Carsetti R, Rosado MM and Wardmann H:
Peripheral development of B cells in mouse and man. Immunol Rev.
197:179–191. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ogden CA, Kowalewski R, Peng Y, Montenegro
V and Elkon KB: IgM is required for efficient complement mediated
phagocytosis of apoptotic cells in vivo. Autoimmunity. 38:259–264.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Quartier P, Potter PK, Ehrenstein MR,
Walport MJ and Botto M: Predominant role of IgM-dependent
activation of the classical pathway in the clearance of dying cells
by murine bone marrowderived macrophages in vitro. Eur J Immunol.
35:252–260. 2005. View Article : Google Scholar
|
|
52
|
Ochsenbein AF, Fehr T, Lutz C, Suter M,
Brombacher F, Hengartner H and Zinkernagel RM: Control of early
viral and bacterial distribution and disease by natural antibodies.
Science. 286:2156–2159. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Baumgarth N, Herman OC, Jager GC, Brown
LE, Herzenberg LA and Chen J: B-1 and B-2 cell-derived
immunoglobulin M antibodies are nonredundant components of the
protective response to influenza virus infection. J Exp Med.
192:271–280. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jayasekera JP, Moseman EA and Carroll MC:
Natural antibody and complement mediate neutralization of influenza
virus in the absence of prior immunity. J Virol. 81:3487–3494.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen Y, Khanna S, Goodyear CS, Park YB,
Raz E, Thiel S, Grönwall C, Vas J, Boyle DL, Corr M, et al:
Regulation of dendritic cells and macrophages by an anti-apoptotic
cell natural antibody that suppresses TLR responses and inhibits
inflammatory arthritis. J Immunol. 183:1346–1359. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nauta AJ, Raaschou-Jensen N, Roos A, Daha
MR, Madsen HO, Borrias-Essers MC, Ryder LP, Koch C and Garred P:
Mannosebinding lectin engagement with late apoptotic and necrotic
cells. Eur J Immunol. 33:2853–2863. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Boes M, Esau C, Fischer MB, Schmidt T,
Carroll M and Chen J: Enhanced B-1 cell development, but impaired
IgG antibody responses in mice deficient in secreted IgM. J
Immunol. 160:4776–4787. 1998.PubMed/NCBI
|
|
58
|
Rodríguez RC and Padilla CR: Compromiso
del Sistema Inmune en Pacientes con Cáncer de Mama. Cancerología.
3:191–197. 2008.In spanish.
|
|
59
|
Zhang X: Regulatory functions of
innate-like B cells. Cell Mol Immunol. 10:113–121. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Coronella JA, Spier C, Welch M, Trevor KT,
Stopeck AT, Villar H and Hersh EM: Antigen-driven oligoclonal
expansion of tumor-infiltrating B cells in infiltrating ductal
carcinoma of the breast. J Immunol. 169:1829–1836. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Llanes-Fernández L, Alvarez-Goyanes RI,
Arango-Prado MC, Alcocer-González JM, Mojarrieta JC, Pérez XE,
López MO, Odio SF, Camacho-Rodríguez R, Guerra-Yi ME, et al:
Relationship between IL-10 and tumor markers in breast cancer
patients. Breast. 15:482–489. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Burnet FM: Immunological surveillance in
neoplasia. Transplant Rev. 7:3–25. 1971.PubMed/NCBI
|
|
63
|
Dunn GP, Old LJ and Schreiber RD: The
immunobiology of cancer immunosurveillance and immunoediting.
Immunity. 21:137–148. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Karin M, Lawrence T and Nizet V: Innate
immunity gone awry: Linking microbial infections to chronic
inflammation and cancer. Cell. 124:823–835. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vollmers HP and Brändlein S: Natural IgM
antibodies: The orphaned molecules in immune surveillance. Adv Drug
Deliv Rev. 58:755–765. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hoebe K, Janssen E and Beutler B: The
interface between innate and adaptive immunity. Nat Immunol.
5:971–974. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Janeway CA Jr: Pillars article:
approaching the asymptote? Evolution and revolution in immunology.
Cold Spring Harb Symp Quant Biol. 54:1–13. 1989.reprinted in J
Immunol 191: 4475–4487, 2013. View Article : Google Scholar
|
|
68
|
Molina R, Barak V, van Dalen A, Duffy MJ,
Einarsson R, Gion M, Goike H, Lamerz R, Nap M, Sölétormos G, et al:
Tumor markers in breast cancer- European Group on Tumor Markers
recommendations. Tumour Biol. 26:281–293. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Monzavi-Karbassi B, Hennings LJ, Artaud C,
Liu T, Jousheghany F, Pashov A, Murali R, Hutchins LF and
Kieber-Emmons T: Preclinical studies of carbohydrate mimetic
peptide vaccines for breast cancer and melanoma. Vaccine.
25:3022–3031. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Anderson KS, Ramachandran N, Wong J,
Raphael JV, Hainsworth E, Demirkan G, Cramer D, Aronzon D, Hodi FS,
Harris L, et al: Application of protein microarrays for multiplexed
detection of antibodies to tumor antigens in breast cancer. J
Proteome Res. 7:1490–1499. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tan HT, Low J, Lim SG and Chung MCM: Serum
autoantibodies as biomarkers for early cancer detection. FEBs J.
276:6880–6904. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shishido SN, Varahan S, Yuan K, Li X and
Fleming SD: Humoral innate immune response and disease. Clin
Immunol. 144:142–158. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Priori ES, Seman G, Dmochowski L, Gallager
HS and Anderson DE: Immunofluorescence studies on sera of patients
with breast carcinoma. Cancer. 28:1462–1471. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chan SP, Maca RD, Levine PH and Ting RC:
Immunologic studies of human breast cancer. I. Serum reactivity
against a lymphoid cell line (Belev) derived from a breast cancer
patient as detected by complement-fixation test. J Natl Cancer
Inst. 47:511–517. 1971.PubMed/NCBI
|
|
75
|
Roberts MM, Bathgate EM and Stevenson A:
Serum immunoglobulin levels in patients with breast cancer. Cancer.
36:221–224. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Roberts MM, Bass EM, Wallace IW and
Stevenson A: Local immunoglobulin production in breast cancer. Br J
Cancer. 27:269–275. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fernández Madrid F: Autoantibodies in
breast cancer sera: Candidate biomarkers and reporters of
tumorigenesis. Cancer Lett. 230:187–198. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Capurro M, Bover L, Portela P, Livingston
P and Mordoh J: FC-215, a monoclonal antibody active against human
breast cancer, specifically recognizes Lewis (x) hapten. Cancer
Immunol Immunother. 45:334–339. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hensel F, Hermann R, Brändlein S, Krenn V,
Schmausser B, Geis S, Müller-Hermelink HK and Vollmers HP:
Regulation of the new coexpressed CD55 (decay-accelerating factor)
receptor on stomach carcinoma cells involved in antibody
SC-1-induced apoptosis. Lab Invest. 81:1553–1563. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pohle T, Brändlein S, Ruoff N,
Müller-Hermelink HK and Vollmers HP and Vollmers HP: Lipoptosis:
Tumor-specific cell death by antibody-induced intracellular lipid
accumulation. Cancer Res. 64:3900–3906. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu CY, Tseng LM, Su JC, Chang KC, Chu PY,
Tai WT, shiau CW and Chen KF: Novel sorafenib analogues induce
apoptosis through SHP-1 dependent STAT3 inactivation in human
breast cancer cells. Breast Cancer Res. 15:R632013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brändlein S, Rauschert N, Rasche L,
Dreykluft A, Hensel F, Conzelmann E, Müller-Hermelink HK and
Vollmers HP: The human IgM antibody SAM-6 induces tumor-specific
apoptosis with oxidized low-density lipoprotein. Mol Cancer Ther.
6:326–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Verring A, Clouth A, Ziolkowski P and
Oremek GM: Clinical usefulness of cancer markers in primary breast
cancer. ISRN Pathol. 2011:8176182011. View Article : Google Scholar
|
|
84
|
Ragupathi G, Liu NX, Musselli C, Powell S,
Lloyd K and Livingston PO: Antibodies against tumor cell
glycolipids and proteins, but not mucins, mediate
complement-dependent cytotoxicity. J Immunol. 174:5706–5712. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wondimu A, Zhang T, Kieber-Emmons T,
Gimotty P, Sproesser K, Somasundaram R, Ferrone S, Tsao CY and
Herlyn D: Peptides mimicking GD2 ganglioside elicit cellular,
humoral and tumor-protective immune responses in mice. Cancer
Immunol Immunother. 57:1079–1089. 2008. View Article : Google Scholar
|
|
86
|
Pashov A, Monzavi-Karbassi B and
Kieber-Emmons T: Immune surveillance and immunotherapy: Lessons
from carbohydrate mimotopes. Vaccine. 27:3405–3415. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hadden JW: The immunology and
immunotherapy of breast cancer: An update. Int J Immunopharmacol.
21:79–101. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
von Mensdorff-Pouilly S, Verstraeten AA,
Kenemans P, Snijdewint FG, Kok A, van Kamp GJ, Paul MA, Van Diest
PJ, Meijer S and Hilgers J: Survival in early breast cancer
patients is favorably infuenced by a natural humoral immune
response to polymorphic epithelial mucin. J Clin oncol. 18:574–583.
2000.PubMed/NCBI
|
|
89
|
Gilewski T, Adluri S, Ragupathi G, Zhang
S, Yao TJ, Panageas K, Moynahan M, Houghton A, Norton L and
Livingston PO: Vaccination of high-risk breast cancer patients with
mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin
Cancer Res. 6:1693–1701. 2000.PubMed/NCBI
|
|
90
|
Adluri S, Gilewski T, Zhang S, Ramnath V,
Ragupathi G and Livingston P: Specificity analysis of sera from
breast cancer patients vaccinated with MUC1-KLH plus QS-21. Br J
Cancer. 79:1806–1812. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Conry RM, Allen KO, Lee S, Moore SE, Shaw
DR and LoBuglio AF: Human autoantibodies to carcinoembryonic
antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res.
6:34–41. 2000.PubMed/NCBI
|
|
92
|
Albanopoulos K, Armakolas A,
Konstadoulakis MM, leandros E, Tsiompanou E, Katsaragakis S,
Alexiou D and Androulakis G: Prognostic significance of circulating
antibodies against carcinoembryonic antigen (anti-CEA) in patients
with colon cancer. Am J Gastroenterol. 95:1056–1061. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dube VE, Haid M, Chmiel JS and Anderson B:
Serum cold agglutinin and IgM levels in breast carcinoma. Breast
Cancer Res Treat. 4:105–108. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Botti C, Martinetti A, Nerini-Molteni S
and Ferrari L: Antimalignin antibody evaluation: A possible
challenge for cancer management. Int J Biol Markers. 12:141–147.
1997.
|
|
95
|
Thornthwaite JT: Anti-malignin antibody in
serum and other tumor marker determinations in breast cancer.
Cancerlett. 148:39–48. 2000.
|
|
96
|
Gilewski TA, Ragupathi G, Dickler M,
Powell S, Bhuta S, Panageas K, Koganty RR, Chin-Eng J, Hudis C,
Norton L, et al: Immunization of high-risk breast cancer patients
with clustered sTn-KLH conjugate plus the immunologic adjuvant
QS-21. Clin Cancer Res. 13:2977–2985. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang TC, Li H, Huang GN and Wang SY:
Detection of IgM and IgG complexes provides new insight into immune
regulation of patients with malignancies: A randomized controlled
trial. Int Immunopharmacol. 7:1433–1441. 2007. View Article : Google Scholar : PubMed/NCBI
|