|
1
|
Feynman R: There's plenty of room at the
bottom: An invitation to enter a new field of physics. Caltech
Engineering and Science. 23(5): 22–36. 1959.
|
|
2
|
Jain KK: Introduction to nanomedicine. The
handbook of nanomedicine. Jain KK: Hamana press; pp. 1–5. 2008,
View Article : Google Scholar
|
|
3
|
Ren Y, Zhang H, Chen B, Cheng J, Cai X,
Liu R, Xia G, Wu W, Wang S, Ding J, et al: Multifunctional magnetic
Fe3O4 nanoparticles combined with
chemotherapy and hyperthermia to overcome multidrug resistance. Int
J Nanomed. 7:2261–2269. 2012.
|
|
4
|
Fakruddin M, Hossain Z and Afroz H:
Prospects and applications of nanobiotechnology: A medical
perspective. J Nanobiotechnol. 10:312012. View Article : Google Scholar
|
|
5
|
Kim ES, Ahn EH, Chung E and Kim DH: Recent
advances in nanobiotechnology and high-throughput molecular
techniques for systems biomedicine. Mol Cells. 36:477–484. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cai W, Gao T, Hong H and Sun J:
Applications of gold nanoparticles in cancer nanotechnology.
Nanotechnol Sci Appl. 1:17–32. 2008.PubMed/NCBI
|
|
7
|
Bharali DJ and Mousa SA: Emerging
nanomedicines for early cancer detection and improved treatment:
Current perspective and future promise. Pharmacol Ther.
128:324–335. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jiang W, Kim BY, Rutka JT and Chan WC:
Nanoparticle-mediated cellular response is size-dependent. Nat
Nanotechnol. 3:145–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari
M, Minko T and Discher DE: Shape effects of filaments versus
spherical particles in flow and drug delivery. Nat Nanotechnol.
2:249–255. 2007. View Article : Google Scholar
|
|
10
|
Verma A and Stellacci F: Effect of surface
properties on nanoparticle-cell interactions. Small. 6:12–21. 2010.
View Article : Google Scholar
|
|
11
|
Olsen RJ, Chang CC, Herrick JL, Zu Y and
Ehsan A: Acute leukemia immunohistochemistry: A systematic
diagnostic approach. Arch Pathol Lab Med. 132:462–475.
2008.PubMed/NCBI
|
|
12
|
Ferrara F and Schiffer CA: Acute myeloid
leukaemia in adults. Lancet. 381:484–495. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Inaba H, Greaves M and Mullighan CG: Acute
lymphoblastic leukaemia. Lancet. 381:1943–1955. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Salem DA and Abd El-Aziz SM:
Flowcytometric immunopheno-typic profile of acute leukemia:
Mansoura experience. Indian J Hematol Blood Transfus. 28:89–96.
2012. View Article : Google Scholar :
|
|
15
|
Sefah K, Tang ZW, Shangguan DH, Chen H,
Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, et
al: Molecular recognition of acute myeloid leukemia using aptamers.
Leukemia. 23:235–244. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang M, Jiang G, Li W, Qiu K, Zhang M,
Carter CM, Al-Quran SZ and Li Y: Developing aptamer probes for
acute myelogenous leukemia detection and surface protein biomarker
discovery. J Hematol Oncol. 7:52014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mallikaratchy PR, Ruggiero A, Gardner JR,
Kuryavyi V, Maguire WF, Heaney ML, McDevitt MR, Patel DJ and
Scheinberg DA: A multivalent DNA aptamer specific for the B-cell
receptor on human lymphoma and leukemia. Nucleic Acids Res.
39:2458–2469. 2011. View Article : Google Scholar :
|
|
18
|
Lakhin AV, Tarantul VZ and Gening LV:
Aptamers: Problems, solutions and prospects. Acta Naturae. 5:34–43.
2013.
|
|
19
|
Herr JK, Smith JE, Medley CD, Shangguan D
and Tan W: Aptamer-conjugated nanoparticles for selective
collection and detection of cancer cells. Anal Chem. 78:2918–2924.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shook D, Coustan-Smith E, Ribeiro RC,
Rubnitz JE and Campana D: Minimal residual disease quantitation in
acute myeloid leukemia. Clin Lymphoma Myeloma. 9(Suppl 3):
S281–S285. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Campana D and Coustan-Smith E:
Measurements of treatment response in childhood acute leukemia.
Korean J Hematol. 47:245–254. 2012. View Article : Google Scholar
|
|
22
|
Campana D: Minimal residual disease in
acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ
Program. 2010:7–12. 2010. View Article : Google Scholar
|
|
23
|
Jaetao JE, Butler KS, Adolphi NL, Lovato
DM, Bryant HC, Rabinowitz I, Winter SS, Tessier TE, Hathaway HJ,
Bergemann C, et al: Enhanced leukemia cell detection using a novel
magnetic needle and nanoparticles. Cancer Res. 69:8310–8316. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pillai JJ, Thulasidasan AK, Anto RJ,
Chithralekha DN, Narayanan A and Kumar GS: Folic acid conjugated
cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific
delivery of hydrophobic drugs to cancer cells. J Nanobiotechnol.
12:252014. View Article : Google Scholar
|
|
25
|
Davis T and Farag SS: Treating relapsed or
refractory Philadelphia chromosome-negative acute lymphoblastic
leukemia: Liposome-encapsulated vincristine. Int J Nanomed.
8:3479–3488. 2013.
|
|
26
|
Krishnan V, Xu X, Barwe SP, Yang X,
Czymmek K, Waldman SA, Mason RW, Jia X and Rajasekaran AK:
Dexamethasone-loaded block copolymer nanoparticles induce leukemia
cell death and enhance therapeutic efficacy: A novel application in
pediatric nanomedicine. Mol Pharm. 10:2199–2210. 2013. View Article : Google Scholar
|
|
27
|
Rahman HS, Rasedee A, How CW, Abdul AB,
Zeenathul NA, Othman HH, Saeed MI and Yeap SK: Zerumbone-loaded
nanostructured lipid carriers: Preparation, characterization, and
antileukemic effect. Int J Nanomed. 8:2769–2781. 2013. View Article : Google Scholar
|
|
28
|
Cosco D, Rocco F, Ceruti M, Vono M, Fresta
M and Paolino D: Self-assembled squalenoyl-cytarabine
nanostructures as a potent nanomedicine for treatment of leukemic
diseases. Int J Nanomed. 7:2535–2546. 2012.
|
|
29
|
Lai BB, Chen BA, Cheng J, Gao F, Xu WL,
Ding JH, Gao C, Sun XC, Li GH, Chen WJ, et al: Daunorubicin-loaded
magnetic nanoparticles of Fe3O4 greatly
enhance the responses of multi-drug-resistant K562 leukemic cells
in a nude mouse xenograft model to chemotherapy. Zhongguo Shi Yan
Xue Ye Xue Za Zhi. 17:345–351. 2009.PubMed/NCBI
|
|
30
|
He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji
X, Li Y and Shi J: A pH-responsive mesoporous silica
nanoparticles-based multi-drug delivery system for overcoming
multi-drug resistance. Biomaterials. 32:7711–7720. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
De Boer AB, De Lange EL, Van der Sandt IC
and Breimer DD: Transporters and the blood-brain barrier (BBB). Int
J Clin Pharmacol Ther. 36:14–15. 1998.PubMed/NCBI
|
|
32
|
Cianfriglia M: Targeting
MDR1-P-glycoprotein (MDR1-Pgp) in immunochemotherapy of acute
myeloid leukemia (AML). Ann Ist Super Sanita. 49:190–208.
2013.PubMed/NCBI
|
|
33
|
Chen B, Sun Q, Wang X, Gao F, Dai Y, Yin
Y, Ding J, Gao C, Cheng J, Li J, et al: Reversal in multidrug
resistance by magnetic nanoparticle of Fe3O4
loaded with adriamycin and tetrandrine in K562/A02 leukemic cells.
Int J Nanomed. 3:277–286. 2008.
|
|
34
|
Chen BA, Lai BB, Cheng J, Xia GH, Gao F,
Xu WL, Ding JH, Gao C, Sun XC, Xu CR, et al: Daunorubicin-loaded
magnetic nanoparticles of Fe3O4 overcome
multidrug resistance and induce apoptosis of K562-n/VCR cells in
vivo. Int J Nanomed. 4:201–208. 2009. View Article : Google Scholar
|
|
35
|
Janko C, Dürr S, Munoz LE, Lyer S, Chaurio
R, Tietze R, Löhneysen S, Schorn C, Herrmann M and Alexiou C:
Magnetic drug targeting reduces the chemotherapeutic burden on
circulating leukocytes. Int J Mol Sci. 14:7341–7355. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhu Y, Li J, Li W, Zhang Y, Yang X, Chen
N, Sun Y, Zhao Y, Fan C and Huang Q: The biocompatibility of
nanodiamonds and their application in drug delivery systems.
Theranostics. 2:302–312. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Man HB, Kim H, Kim HJ, Robinson E, Liu WK,
Chow EK and Ho D: Synthesis of nanodiamond-daunorubicin conjugates
to overcome multidrug chemoresistance in leukemia. Nanomedicine.
10:359–369. 2014. View Article : Google Scholar :
|
|
38
|
Ghoneum A, Sharma S and Gimzewski J:
Nano-hole induction by nanodiamond and nanoplatinum liquid, DPV576,
reverses multidrug resistance in human myeloid leukemia (HL60/AR).
Int J Nanomed. 8:2567–2573. 2013. View Article : Google Scholar
|
|
39
|
Grignani F, Testa U, Fagioli M, Barberi T,
Masciulli R, Mariani G, Peschle C and Pelicci PG: Promyelocytic
leukemia-specific PML-retinoic acid alpha receptor fusion protein
interferes with erythroid differentiation of human erythroleukemia
K562 cells. Cancer Res. 55:440–443. 1995.PubMed/NCBI
|
|
40
|
Imaizumi M, Suzuki H, Yoshinari M, Sato A,
Saito T, Sugawara A, Tsuchiya S, Hatae Y, Fujimoto T, Kakizuka A,
et al: Mutations in the E-domain of RARα portion of the PML/RARα
chimeric gene may confer clinical resistance to all-trans retinoic
acid in acute promyelocytic leukemia. Blood. 92:374–382.
1998.PubMed/NCBI
|
|
41
|
Kim DG, Jeong YI, Choi C, Roh SH, Kang SK,
Jang MK and Nah JW: Retinol-encapsulated low molecular
water-soluble chitosan nanoparticles. Int J Pharm. 319:130–138.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fung TK and So CW: Overcoming treatment
resistance in acute promyelocytic leukemia and beyond. Oncotarget.
4:1128–1129. 2013.PubMed/NCBI
|
|
43
|
Huang X, Jain PK, El-Sayed IH and El-Sayed
MA: Gold nanoparticles: Interesting optical properties and recent
applications in cancer diagnostics and therapy. Nanomedicine.
2:681–693. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Choi YE, Kwak JW and Park JW:
Nanotechnology for early cancer detection. Sens Basel. 10:428–455.
2010. View Article : Google Scholar
|
|
45
|
Radwan SH and Azzazy HM: Gold
nanoparticles for molecular diagnostics. Expert Rev Mol Diagn.
9:511–524. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hwang SH, Im SG, Hah SS, Cong VT, Lee EJ,
Lee YS, Lee GK, Lee DH and Son SJ: Effects of upconversion
nanoparticles on polymerase chain reaction. PLoS One. 8:e734082013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gormally E, Vineis P, Matullo G, Veglia F,
Caboux E, Le Roux E, Peluso M, Garte S, Guarrera S, Munnia A, et
al: TP53 and KRAS2 mutations in plasma DNA of healthy subjects and
subsequent cancer occurrence: A prospective study. Cancer Res.
66:6871–6876. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Silver RT, Woolf SH, Hehlmann R, Appelbaum
FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM,
Lichtin AE, et al: An evidence-based analysis of the effect of
busulfan, hydroxyurea, interferon, and allogeneic bone marrow
transplantation in treating the chronic phase of chronic myeloid
leukemia: Developed for the American Society of Hematology. Blood.
94:1517–1536. 1999.PubMed/NCBI
|
|
49
|
Shet AS, Jahagirdar BN and Verfaillie CM:
Chronic myelogenous leukemia: Mechanisms underlying disease
progression. Leukemia. 16:1402–1411. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gabert J, Beillard E, van der Velden VH,
Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela
JM, Cavé H, et al: Standardization and quality control studies of
'real-time' quantitative reverse transcriptase polymerase chain
reaction of fusion gene transcripts for residual disease detection
in leukemia - a Europe Against Cancer program. Leukemia.
17:2318–2357. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Conde J, Doria G and Baptista P: Noble
metal nanoparticles applications in cancer. J Drug Deliv.
2012:7510752012. View Article : Google Scholar
|
|
52
|
Baptista PV, Doria G, Quaresma P, Cavadas
M, Neves CS, Gomes I, Eaton P, Pereira E and Franco R:
Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci.
104:427–488. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
El-Metnawy WH, Mattar MM, El-Nahass YH,
Samra MA, Abdelhamid HM, Abdlfattah RM and Hamed AR: Predictive
value of pretreatment BCR-ABL (IS) transcript level on response to
imatinib therapy in Egyptian patients with chronic phase chronic
myeloid leukemia (CPCML). Int J Biomed Sci. 9:48–53.
2013.PubMed/NCBI
|
|
54
|
Kang Y, Hodges A, Ong E, Roberts W,
Piermarocchi C and Paternostro G: Identification of drug
combinations containing imatinib for treatment of BCR-ABL+
leukemias. PLoS One. 9:e1022212014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Palamà IE, Coluccia AM and Gigli G: Uptake
of imatinib-loaded polyelectrolyte complexes by BCR-ABL+
cells: A long-acting drug-delivery strategy for targeting
oncoprotein activity. Nanomedicine. 9:2087–2098. 2014. View Article : Google Scholar
|
|
56
|
Jamieson CH: Chronic myeloid leukemia stem
cells. Hematology Am Soc Hematol Educ Program. 2008:436–442. 2008.
View Article : Google Scholar
|
|
57
|
Vilpo J, Hulkkonen J, Hurme M and Vilpo L:
Surface membrane antigen expression changes induced in vitro by
exogenous growth factors in chronic lymphocytic leukemia cells.
Leukemia. 16:1691–1698. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mukherjee P, Bhattacharya R, Bone N, Lee
YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ,
et al: Potential therapeutic application of gold nanoparticles in
B-chronic lymphocytic leukemia (BCLL): Enhancing apoptosis. J
Nanobiotechnol. 5:42007. View Article : Google Scholar
|
|
59
|
Lee YK, Bone ND, Strege AK, Shanafelt TD,
Jelinek DF and Kay NE: VEGF receptor phosphorylation status and
apoptosis is modulated by a green tea component,
epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic
leukemia. Blood. 104:788–794. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bogusz J, Majchrzak A, Mędra A,
Cebula-Obrzut B, Robak T and Smolewski P: Mechanisms of action of
the anti-VEGF monoclonal antibody bevacizumab on chronic
lymphocytic leukemia cells. Postepy Hig Med Dosw Online.
67:107–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shanafelt TD, Gunderson H and Call TG:
Commentary: Chronic lymphocytic leukemia - the price of progress.
Oncologist. 15:601–602. 2010. View Article : Google Scholar
|
|
62
|
Żołnierczyk JD, Borowiak A, Błoński JZ,
Cebula-Obrzut B, Rogalińska M, Kotkowska A, Wawrzyniak E, Smolewski
P, Robak T and Kiliańska ZM: In vivo and ex vivo responses of CLL
cells to purine analogs combined with alkylating agent. Pharmacol
Rep. 65:460–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yu B, Mao Y, Yuan Y, Yue C, Wang X, Mo X,
Jarjoura D, Paulaitis ME, Lee RJ and Byrd JC: Targeted drug
delivery and cross-linking induced apoptosis with anti-CD37 based
dual-ligand immunoliposomes in B chronic lymphocytic leukemia
cells. Biomaterials. 34:6185–6193. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Siddiqi T, Thomas SH and Chen R: Role of
brentuximab vedotin in the treatment of relapsed or refractory
Hodgkin lymphoma. Pharmgenomics Pers Med. 7:79–85. 2014.PubMed/NCBI
|
|
65
|
Zharov VP, Mercer KE, Galitovskaya EN and
Smeltzer MS: Photothermal nanotherapeutics and nanodiagnostics for
selective killing of bacteria targeted with gold nanoparticles.
Biophys J. 90:619–627. 2006. View Article : Google Scholar
|
|
66
|
Kutok JL and Aster JC: Molecular biology
of anaplastic lymphoma kinase-positive anaplastic large-cell
lymphoma. J Clin Oncol. 20:3691–3702. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Heidegger S, Beer AJ, Geissinger E,
Rosenwald A, Peschel C, Ringshausen I and Keller U: Combination
therapy with brentuximab vedotin and cisplatin/cytarabine in a
patient with primarily refractory anaplastic lymphoma kinase
positive anaplastic large cell lymphoma. Onco Targets Ther.
7:1123–1127. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zdzalik D, Dymek B, Grygielewicz P,
Gunerka P, Bujak A, Lamparska-Przybysz M, Wieczorek M and Dzwonek
K: Activating mutations in ALK kinase domain confer resistance to
structurally unrelated ALK inhibitors in NPM-ALK-positive
anaplastic large-cell lymphoma. J Cancer Res Clin Oncol.
140:589–598. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhao N, Bagaria HG, Wong MS and Zu Y: A
nanocomplex that is both tumor cell-selective and cancer
gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol.
9:22011. View Article : Google Scholar
|
|
70
|
Zinzani PL, Vose JM, Czuczman MS, Reeder
CB, Haioun C, Polikoff J, Tilly H, Zhang L, Prandi K, Li J, et al:
Long-term follow-up of lenalidomide in relapsed/refractory mantle
cell lymphoma: Subset analysis of the NHL-003 study. Ann Oncol.
24:2892–2897. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Desai M, Newberry K, Ou Z, Wang M and
Zhang L: Lenalidomide in relapsed or refractory mantle cell
lymphoma: Overview and perspective. Ther Adv Hematol. 5:91–101.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pighi C, Gu TL, Dalai I, Barbi S, Parolini
C, Bertolaso A, Pedron S, Parisi A, Ren J, Cecconi D, et al:
Phospho-proteomic analysis of mantle cell lymphoma cells suggests a
pro-survival role of B-cell receptor signaling. Cell Oncol.
34:141–153. 2011. View Article : Google Scholar
|
|
73
|
Cely I, Yiv S, Yin Q, Shahidzadeh A, Tang
L, Cheng J and Uckun FM: Targeting mantle cell lymphoma with
anti-SYK nanoparticles. J Anal Oncol. 1:1–9. 2012.
|