|
1
|
Tisdale MJ: Mechanisms of cancer cachexia.
Physiol Rev. 89:381–410. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fearon KC, Glass DJ and Guttridge DC:
Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell
Metab. 16:153–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Argilés JM, Busquets S, Stemmler B and
López-Soriano FJ: Cancer cachexia: Understanding the molecular
basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ali S and Garcia JM: Sarcopenia, cachexia
and aging: Diagnosis, mechanisms and therapeutic options - a
mini-review. Gerontology. 60:294–305. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fearon K, Strasser F, Anker SD, Bosaeus I,
Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N,
Mantovani G, et al: Definition and classification of cancer
cachexia: An international consensus. Lancet Oncol. 12:489–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Argilés JM, López-Soriano FJ, Toledo M,
Betancourt A, Serpe R and Busquets S: The cachexia score (CASCO): A
new tool for staging cachectic cancer patients. J Cachexia
Sarcopenia Muscle. 2:87–93. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Windsor JA and Hill GL: Risk factors for
postoperative pneumonia. The importance of protein depletion. Ann
Surg. 208:209–214. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tian M, Nishijima Y, Asp ML, Stout MB,
Reiser PJ and Belury MA: Cardiac alterations in cancer-induced
cachexia in mice. Int J Oncol. 37:347–353. 2010.PubMed/NCBI
|
|
9
|
Damrauer JS, Stadler ME, Acharyya S,
Baldwin AS, Couch ME and Guttridge DC: Chemotherapy-induced muscle
wasting: Association with NF-κB and cancer cachexia. Basic Appl
Myol. 18:139–148. 2008.
|
|
10
|
Sakai H, Sagara A, Arakawa K, Sugiyama R,
Hirosaki A, Takase K, Jo A, Sato K, Chiba Y, Yamazaki M, et al:
Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl
Pharmacol. 278:190–199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bachmann J, Heiligensetzer M,
Krakowski-Roosen H, Büchler MW, Friess H and Martignoni ME:
Cachexia worsens prognosis in patients with resectable pancreatic
cancer. J Gastrointest Surg. 12:1193–1201. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Onesti JK and Guttridge DC: Inflammation
based regulation of cancer cachexia. Biomed Res Int.
2014:1684072014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hotamisligil GS: The role of TNFalpha and
TNF receptors in obesity and insulin resistance. J Intern Med.
245:621–625. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Heinrich PC, Behrmann I, Haan S, Hermanns
HM, Müller-Newen G and Schaper F: Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J.
374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Schakman O, Kalista S, Barbé C, Loumaye A
and Thissen JP: Glucocorticoid-induced skeletal muscle atrophy. Int
J Biochem Cell Biol. 45:2163–2172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Watchorn TM, Waddell I, Dowidar N and Ross
JA: Proteolysis-inducing factor regulates hepatic gene expression
via the transcription factors NF-(kappa)B and STAT3. FASEB J.
15:562–564. 2001.PubMed/NCBI
|
|
17
|
Deans DA, Wigmore SJ, Gilmour H, Tisdale
MJ, Fearon KC and Ross JA: Expression of the proteolysis-inducing
factor core peptide mRNA is upregulated in both tumour and adjacent
normal tissue in gastro-oesophageal malignancy. Br J Cancer.
94:731–736. 2006.PubMed/NCBI
|
|
18
|
Han HQ, Zhou X, Mitch WE and Goldberg AL:
Myostatin/activin pathway antagonism: Molecular basis and
therapeutic potential. Int J Biochem Cell Biol. 45:2333–2347. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zimmers TA, Davies MV, Koniaris LG, Haynes
P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM and Lee SJ:
Induction of cachexia in mice by systemically administered
myostatin. Science. 296:1486–1488. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Elkina Y, von Haehling S, Anker SD and
Springer J: The role of myostatin in muscle wasting: An overview. J
Cachexia Sarcopenia Muscle. 2:143–151. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Martin L, Birdsell L, Macdonald N, Reiman
T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB and
Baracos VE: Cancer cachexia in the age of obesity: Skeletal muscle
depletion is a powerful prognostic factor, independent of body mass
index. J Clin Oncol. 31:1539–1547. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Egerman MA and Glass DJ: Signaling
pathways controlling skeletal muscle mass. Crit Rev Biochem Mol
Biol. 49:59–68. 2014. View Article : Google Scholar :
|
|
23
|
Nagy V and Dikic I: Ubiquitin ligase
complexes: From substrate selectivity to conjugational specificity.
Biol Chem. 391:163–169. 2010. View Article : Google Scholar
|
|
24
|
Baird TD and Wek RC: Eukaryotic initiation
factor 2 phosphorylation and translational control in metabolism.
Adv Nutr. 3:307–321. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lecker SH, Jagoe RT, Gilbert A, Gomes M,
Baracos V, Bailey J, Price SR, Mitch WE and Goldberg AL: Multiple
types of skeletal muscle atrophy involve a common program of
changes in gene expression. FASEB J. 18:39–51. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Petruzzelli M, Schweiger M, Schreiber R,
Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon
M, Robertson G, et al: A switch from white to brown fat increases
energy expenditure in cancer-associated cachexia. Cell Metab.
20:433–447. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bosaeus I, Daneryd P, Svanberg E and
Lundholm K: Dietary intake and resting energy expenditure in
relation to weight loss in unselected cancer patients. Int J
Cancer. 93:380–383. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tisdale MJ: Molecular pathways leading to
cancer cachexia. Physiology (Bethesda). 20:340–348. 2005.
View Article : Google Scholar
|
|
29
|
Hyltander A, Drott C, Körner U, Sandstrom
R and Lundholm K: Elevated energy expenditure in cancer patients
with solid tumours. Eur J Cancer. 27:9–15. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cantor JR and Sabatini DM: Cancer cell
metabolism: One hallmark, many faces. Cancer Discov. 2:881–898.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wise DR and Thompson CB: Glutamine
addiction: A new therapeutic target in cancer. Trends Biochem Sci.
35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Delano MJ and Moldawer LL: The origins of
cachexia in acute and chronic inflammatory diseases. Nutr Clin
Pract. 21:68–81. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rousset S, Alves-Guerra MC, Mozo J, Miroux
B, Cassard-Doulcier AM, Bouillaud F and Ricquier D: The biology of
mitochondrial uncoupling proteins. Diabetes. 53(Suppl 1):
S130–S135. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bing C, Russell ST, Beckett EE, Collins P,
Taylor S, Barraclough R, Tisdale MJ and Williams G: Expression of
uncoupling proteins-1, -2 and -3 mRNA is induced by an
adenocarcinoma-derived lipid-mobilizing factor. Br J Cancer.
86:612–618. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Thair SA, Walley KR, Nakada TA, McConechy
MK, Boyd JH, Wellman H and Russell JA: A single nucleotide
polymorphism in NF-κB inducing kinase is associated with mortality
in septic shock. J Immunol. 186:2321–2328. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tan BH, Ross JA, Kaasa S, Skorpen F and
Fearon KC; European Palliative Care Research Collaborative:
Identification of possible genetic polymorphisms involved in cancer
cachexia: A systematic review. J Genet. 90:165–177. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schneider DS and Ayres JS: Two ways to
survive infection: What resistance and tolerance can teach us about
treating infectious diseases. Nat Rev Immunol. 8:889–895. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Råberg L, Graham AL and Read AF:
Decomposing health: Tolerance and resistance to parasites in
animals. Philos Trans R Soc Lond B Biol Sci. 364:37–49. 2009.
View Article : Google Scholar :
|
|
39
|
Li C, Corraliza I and Langhorne J: A
defect in interleukin-10 leads to enhanced malarial disease in
Plasmodium chabaudi chabaudi infection in mice. Infect Immun.
67:4435–4442. 1999.PubMed/NCBI
|
|
40
|
Medzhitov R, Schneider DS and Soares MP:
Disease tolerance as a defense strategy. Science. 335:936–941.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
De Lerma Barbaro A, Perletti G, Bonapace
IM and Monti E: Inflammatory cues acting on the adult intestinal
stem cells and the early onset of cancer (Review). Int J Oncol.
45:959–968. 2014.PubMed/NCBI
|
|
42
|
Wu ZH and Shi Y: When ubiquitin meets
NF-κB: A trove for anticancer drug development. Curr Pharm Des.
19:3263–3275. 2013. View Article : Google Scholar :
|
|
43
|
Karin M, Cao Y, Greten FR and Li ZW:
NF-kappaB in cancer: From innocent bystander to major culprit. Nat
Rev Cancer. 2:301–310. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cai D, Frantz JD, Tawa NE Jr, Melendez PA,
Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, et
al: IKKbeta/NF-kappaB activation causes severe muscle wasting in
mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hunter RB, Stevenson E, Koncarevic A,
Mitchell-Felton H, Essig DA and Kandarian SC; SC: Activation of an
alternative NF-kappaB pathway in skeletal muscle during disuse
atrophy. FASEB J. 16:529–538. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Penner CG, Gang G, Wray C, Fischer JE and
Hasselgren PO: The transcription factors NF-kappab and AP-1 are
differentially regulated in skeletal muscle during sepsis. Biochem
Biophys Res Commun. 281:1331–1336. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wyke SM, Russell ST and Tisdale MJ:
Induction of proteasome expression in skeletal muscle is attenuated
by inhibitors of NF-kappaB activation. Br J Cancer. 91:1742–1750.
2004.PubMed/NCBI
|
|
48
|
Wang H, Lai YJ, Chan YL, Li TL and Wu CJ:
Epigallocatechin-3-gallate effectively attenuates skeletal muscle
atrophy caused by cancer cachexia. Cancer Lett. 305:40–49. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang Q, Wan L, Zhou Z, Li Y, Yu Q, Liu L,
Li B and Guo C: Parthenolide from Parthenium integrifolium reduces
tumor burden and alleviate cachexia symptoms in the murine CT-26
model of colorectal carcinoma. Phytomedicine. 20:992–998. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Crawford LJ, Walker B and Irvine AE:
Proteasome inhibitors in cancer therapy. J Cell Commun Signal.
5:101–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Beck SA, Smith KL and Tisdale MJ:
Anticachectic and antitumor effect of eicosapentaenoic acid and its
effect on protein turnover. Cancer Res. 51:6089–6093.
1991.PubMed/NCBI
|
|
52
|
Whitehouse AS, Smith HJ, Drake JL and
Tisdale MJ: Mechanism of attenuation of skeletal muscle protein
catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res.
61:3604–3609. 2001.PubMed/NCBI
|
|
53
|
Benny Klimek ME, Aydogdu T, Link MJ, Pons
M, Koniaris LG and Zimmers TA: Acute inhibition of myostatin-family
proteins preserves skeletal muscle in mouse models of cancer
cachexia. Biochem Biophys Res Commun. 391:1548–1554. 2010.
View Article : Google Scholar
|
|
54
|
Marchal JA, Lopez GJ, Peran M, Comino A,
Delgado JR, García-García JA, Conde V, Aranda FM, Rivas C, Esteban
M, et al: The impact of PKR activation: from neurodegeneration to
cancer. FASEB J. 28:1965–1974. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Eley HL and Tisdale MJ: Skeletal muscle
atrophy, a link between depression of protein synthesis and
increase in degradation. J Biol Chem. 282:7087–7097. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Eley HL, Russell ST and Tisdale MJ: Role
of the dsRNA-dependent protein kinase (PKR) in the attenuation of
protein loss from muscle by insulin and insulin-like growth
factor-I (IGF-I). Mol Cell Biochem. 313:63–69. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Eley HL, Russell ST and Tisdale MJ:
Attenuation of muscle atrophy in a murine model of cachexia by
inhibition of the dsRNA-dependent protein kinase. Br J Cancer.
96:1216–1222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Eley HL, Russell ST and Tisdale MJ: Effect
of branched-chain amino acids on muscle atrophy in cancer cachexia.
Biochem J. 407:113–120. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Davis TW, Zweifel BS, O'Neal JM, Heuvelman
DM, Abegg AL, Hendrich TO and Masferrer JL: Inhibition of
cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J
Pharmacol Exp Ther. 308:929–934. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hyde CA and Missailidis S: Inhibition of
arachidonic acid metabolism and its implication on cell
proliferation and tumour-angiogenesis. Int Immunopharmacol.
9:701–715. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Roth E: Immune and cell modulation by
amino acids. Clin Nutr. 26:535–544. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ham DJ, Murphy KT, Chee A, Lynch GS and
Koopman R: Glycine administration attenuates skeletal muscle
wasting in a mouse model of cancer cachexia. Clin Nutr. 33:448–458.
2014. View Article : Google Scholar
|
|
63
|
Zhou X, Wang JL, Lu J, Song Y, Kwak KS,
Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, et al: Reversal
of cancer cachexia and muscle wasting by ActRIIB antagonism leads
to prolonged survival. Cell. 142:531–543. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gallot YS, Durieux AC, Castells J,
Desgeorges MM, Vernus B, Plantureux L, Rémond D, Jahnke VE, Lefai
E, Dardevet D, et al: Myostatin gene inactivation prevents skeletal
muscle wasting in cancer. Cancer Res. 74:7344–7356. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ruas JL, White JP, Rao RR, Kleiner S,
Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, et
al: A PGC-1α isoform induced by resistance training regulates
skeletal muscle hypertrophy. Cell. 151:1319–1331. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Braun TP, Grossberg AJ, Krasnow SM,
Levasseur PR, Szumowski M, Zhu XX, Maxson JE, Knoll JG, Barnes AP
and Marks DL: Cancer- and endotoxin-induced cachexia require intact
glucocorticoid signaling in skeletal muscle. FASEB J. 27:3572–3582.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kadmiel M and Cidlowski JA: Glucocorticoid
receptor signaling in health and disease. Trends Pharmacol Sci.
34:518–530. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schakman O, Kalista S, Barbé C, Loumaye A
and Thissen JP: Glucocorticoid-induced skeletal muscle atrophy. Int
J Biochem Cell Biol. 45:2163–2172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Das SK, Eder S, Schauer S, Diwoky C,
Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner
M, et al: Adipose triglyceride lipase contributes to
cancer-associated cachexia. Science. 333:233–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kir S, White JP, Kleiner S, Kazak L, Cohen
P, Baracos VE and Spiegelman BM: Tumour-derived PTH-related protein
triggers adipose tissue browning and cancer cachexia. Nature.
513:100–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hendifar A, Yang D, Lenz F, Lurje G, Pohl
A, Lenz C, Ning Y, Zhang W and Lenz HJ: Gender disparities in
metastatic colorectal cancer survival. Clin Cancer Res.
15:6391–6397. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Koo JH, Jalaludin B, Wong SK, Kneebone A,
Connor SJ and Leong RW: Improved survival in young women with
colorectal cancer. Am J Gastroenterol. 103:1488–1495. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
al-Azzawi F and Wahab M: Estrogen and
colon cancer: Current issues. Climacteric. 5:3–14. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cosper PF and Leinwand LA: Cancer causes
cardiac atrophy and autophagy in a sexually dimorphic manner.
Cancer Res. 71:1710–1720. 2011. View Article : Google Scholar :
|
|
75
|
Sandri M: Protein breakdown in muscle
wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J
Biochem Cell Biol. 45:2121–2129. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Strassmann G, Masui Y, Chizzonite R and
Fong M: Mechanisms of experimental cancer cachexia. Local
involvement of IL-1 in colon-26 tumor. J Immunol. 150:2341–2345.
1993.PubMed/NCBI
|
|
77
|
Piccinini AM and Midwood KS: DAMPening
inflammation by modulating TLR signalling. Mediators Inflamm.
2010:6723952010.PubMed/NCBI
|
|
78
|
Cannon TY, Guttridge D, Dahlman J, George
JR, Lai V, Shores C, Buzková P and Couch ME: The effect of altered
Toll-like receptor 4 signaling on cancer cachexia. Arch Otolaryngol
Head Neck Surg. 133:1263–1269. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vahle AK, Kerem A, Oztürk E, Bankfalvi A,
Lang S and Brandau S: Optimization of an orthotopic murine model of
head and neck squamous cell carcinoma in fully immunocompetent mice
- role of toll-like-receptor 4 expressed on host cells. Cancer
Lett. 317:199–206. 2012. View Article : Google Scholar
|
|
80
|
Di Marco S, Cammas A, Lian XJ, Kovacs EN,
Ma JF, Hall DT, Mazroui R, Richardson J, Pelletier J and Gallouzi
IE: The translation inhibitor pateamine A prevents cachexia-induced
muscle wasting in mice. Nat Commun. 3:8962012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kuznetsov G, Xu Q, Rudolph-Owen L, Tendyke
K, Liu J, Towle M, Zhao N, Marsh J, Agoulnik S, Twine N, et al:
Potent in vitro and in vivo anticancer activities of des-methyl,
des-amino pateamine A, a synthetic analogue of marine natural
product pateamine A. Mol Cancer Ther. 8:1250–1260. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Buck M and Chojkier M: Muscle wasting and
dedifferentiation induced by oxidative stress in a murine model of
cachexia is prevented by inhibitors of nitric oxide synthesis and
antioxidants. EMBO J. 15:1753–1765. 1996.PubMed/NCBI
|
|
83
|
Hall DT, Ma JF, Marco SD and Gallouzi IE:
Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome,
sarcopenia, and cachexia. Aging (Albany NY). 3:702–715. 2011.
|
|
84
|
Buchan JR and Parker R: Eukaryotic stress
granules: The ins and outs of translation. Mol Cell. 36:932–941.
2009. View Article : Google Scholar
|
|
85
|
Pretto F, Ghilardi C, Moschetta M, Bassi
A, Rovida A, Scarlato V, Talamini L, Fiordaliso F, Bisighini C,
Damia G, et al: Sunitinib prevents cachexia and prolongs survival
of mice bearing renal cancer by restraining STAT3 and MuRF-1
activation in muscle. Oncotarget. 6:3043–3054. 2015.
|
|
86
|
Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan
R, Puzis L, Koniaris LG and Zimmers TA: JAK/STAT3 pathway
inhibition blocks skeletal muscle wasting downstream of IL-6 and in
experimental cancer cachexia. Am J Physiol Endocrinol Metab.
303:E410–E421. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gonzalez MC, Pastore CA, Orlandi SP and
Heymsfield SB: Obesity paradox in cancer: New insights provided by
body composition. Am J Clin Nutr. 99:999–1005. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Monitto CL, Berkowitz D, Lee KM, Pin S, Li
D, Breslow M, O'Malley B and Schiller M: Differential gene
expression in a murine model of cancer cachexia. Am J Physiol
Endocrinol Metab. 281:E289–E297. 2001.PubMed/NCBI
|
|
89
|
Robert F, Mills JR, Agenor A, Wang D,
DiMarco S, Cencic R, Tremblay ML, Gallouzi IE, Hekimi S, Wing SS,
et al: Targeting protein synthesis in a Myc/mTOR-driven model of
anorexia-cachexia syndrome delays its onset and prolongs survival.
Cancer Res. 72:747–756. 2012. View Article : Google Scholar
|
|
90
|
Cuenca AG, Cuenca AL, Winfield RD, Joiner
DN, Gentile L, Delano MJ, Kelly-Scumpia KM, Scumpia PO, Matheny MK,
Scarpace PJ, et al: Novel role for tumor-induced expansion of
myeloid-derived cells in cancer cachexia. J Immunol. 192:6111–6119.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Baltgalvis KA, Berger FG, Pena MM, Davis
JM, Muga SJ and Carson JA: Interleukin-6 and cachexia in
ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol.
294:R393–R401. 2008. View Article : Google Scholar
|
|
92
|
Velázquez KT, Enos RT, Narsale AA, Puppa
MJ, Davis JM, Murphy EA and Carson JA: Quercetin supplementation
attenuates the progression of cancer cachexia in
ApcMin/+ mice. J Nutr. 144:868–875. 2014. View Article : Google Scholar
|
|
93
|
Lyons SK: Advances in imaging mouse tumour
models in vivo. J Pathol. 205:194–205. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jain M, Nilsson R, Sharma S, Madhusudhan
N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha
VK: Metabolite profiling identifies a key role for glycine in rapid
cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rose ML, Madren J, Bunzendahl H and
Thurman RG: Dietary glycine inhibits the growth of B16 melanoma
tumors in mice. Carcinogenesis. 20:793–798. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu Y, Cheng H, Zhou Y, Zhu Y, Bian R,
Chen Y, Li C, Ma Q, Zheng Q, Zhang Y, et al: Myostatin induces
mitochondrial metabolic alteration and typical apoptosis in cancer
cells. Cell Death Dis. 4:e4942013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Stratton MR, Campbell PJ and Futreal PA:
The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI
|