The differentiation of hMSCs counteracts their migration capability and pro‑angiogenic effects in vitro

  • Authors:
    • A. Scherzed
    • S. Hackenberg
    • K. Froelich
    • K. Rak
    • P. Schendzielorz
    • T. Gehrke
    • R. Hagen
    • N. Kleinsasser
  • View Affiliations

  • Published online on: November 3, 2015     https://doi.org/10.3892/or.2015.4383
  • Pages: 219-226
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Human mesenchymal stem cells (hMSCs) have been applied therapeutically in numerous clinical trials. The pro‑angiogenic effects of hMSCs, as well as their strong tumor tropism, have been shown both in vitro and in vivo. Some studies suggest using hMSCs as potential drug‑carriers for tumor therapy. In previous investigations by our group, the pro‑tumorigenic effects of hMSCs on head and neck squamous cell carcinoma (HNSCC) were shown. However, the influence of hMSCs on tumor vascularization as well as the possibility of its inhibition are yet to be elucidated. The cytokine patterns of the HNSCC cell line FaDu, native hMSCs (hMSCs‑nat), hMSCs differentiated into adipocytes (hMSCs‑adip) and osteocytes (hMSCs‑ost) were evaluated. Human umbilical vein endothelial cells (HUVECs) were co‑cultured with FaDu cells, hMSCs‑nat, hMSCs‑adip and hMSCs‑ost. The capillary tube formation assay was applied. Furthermore, the migration capability of hMSCs‑nat, hMSCs‑adip and hMSCs‑ost towards FaDu cells was measured in a Transwell system. Spheroids were cultured from hMSCs‑nat, FaDu cells and DiI‑labeled HUVECs. FaDu cells, hMSCs‑nat, hMSCs‑adip and hMSCs‑ost released a wide range of cytokines and growth factors, e.g., IL‑6, IL‑8, IL‑10, GRO and MCP. In the capillary tube formation assay, HUVECs generated significantly longer tubes after co‑cultivation with hMSCs‑nat as compared to HUVECs alone and FaDu. Differentiation into adipocytes and osteocytes counteracted the tube formation. The adipogenic differentiation did not alter hMSC motility, whereas osteogenic differentiation significantly inhibited hMSC migration. Generation of multi‑cellular spheroids from hMSCs‑nat, FaDu cells and DiI‑labeled HUVECs was possible. Florescence microscopy revealed that all HUVECs were present in the spheroid core. Taken together, hMSCs‑nat have a pro‑angiogenic effect. The effects are counteracted by the differentiation of hMSCs towards osteogenic and adipogenic lineages. The differentiation of stem cells into different lineages may be a promising solution to generating carriers for cancer therapy without pro‑tumorigenic properties.

References

1 

Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6. 1990. View Article : Google Scholar : PubMed/NCBI

2 

Bergers G and Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI

4 

Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S and Epstein SE: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 109:1543–1549. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Hung SC, Pochampally RR, Chen SC, Hsu SC and Prockop DJ: Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 25:2363–2370. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Kanazawa T, Nishino H, Hasegawa M, Ohta Y, Iino Y, Ichimura K and Noda Y: Interleukin-6 directly influences proliferation and invasion potential of head and neck cancer cells. Eur Arch Otorhinolaryngol. 264:815–821. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Kishimoto T: The biology of interleukin-6. Blood. 74:1–10. 1989.PubMed/NCBI

8 

Caplan AI: Mesenchymal stem cells. J Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI

9 

Myers JT, Barkauskas DS and Huang AY: Dynamic imaging of marrow-resident granulocytes interacting with human mesenchymal stem cells upon systemic lipopolysaccharide challenge. Stem Cells Int. 2013:6568392013. View Article : Google Scholar : PubMed/NCBI

10 

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Lin WR, Brittan M and Alison MR: The role of bone marrow-derived cells in fibrosis. Cells Tissues Organs. 188:178–188. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P, Tilghman SL, Salvo VA, Fonseca JP, Lacey MR, et al: Adult human mesenchymal stem cells enhance breast tumori-genesis and promote hormone independence. Breast Cancer Res Treat. 121:293–300. 2010. View Article : Google Scholar

13 

Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al: Human mesen-chymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med. 203:1235–1247. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C, et al: Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 23:925–933. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Scherzed A, Hackenberg S, Froelich K, Rak K, Technau A, Radeloff A, Nöth U, Koehler C, Hagen R and Kleinsasser N: Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro. Toxicol Lett. 218:207–214. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Scherzed A, Hackenberg S, Radeloff A, Froelich K, Rak K, Hagen R and Kleinsasser N: Human mesenchymal stem cells promote cancer motility and cytokine secretion in vitro. Cells Tissues Organs. 198:327–337. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Rangan SR: A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer. 29:117–121. 1972. View Article : Google Scholar : PubMed/NCBI

18 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med. 49:407–424. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Grantab RH and Tannock IF: Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer. 12:2142012. View Article : Google Scholar : PubMed/NCBI

21 

Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Gupta MK and Qin RY: Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 9:1144–1155. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Copland IB: Mesenchymal stromal cells for cardiovascular disease. J Cardiovasc Dis Res. 2:3–13. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhang D, Fan GC, Zhou X, Zhao T, Pasha Z, Xu M, Zhu Y, Ashraf M and Wang Y: Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 44:281–292. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Wen Z, Huang W, Feng Y, Cai W, Wang Y, Wang X, Liang J, Wani M, Chen J, Zhu P, et al: MicroRNA-377 regulates mesenchymal stem cell-induced angiogenesis in ischemic hearts by targeting VEGF. PLoS One. 9:e1046662014. View Article : Google Scholar : PubMed/NCBI

26 

Hua J, He ZG, Qian DH, Lin SP, Gong J, Meng HB, Yang TS, Sun W, Xu B, Zhou B, et al: Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol. 7:3580–3595. 2014.PubMed/NCBI

27 

Park IS, Chung PS and Ahn JC: Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials. 35:9280–9289. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Jazayeri M, Allameh A, Soleimani M, Jazayeri SH, Piryaei A and Kazemnejad S: Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells. Cell Biol Int. 32:1183–1192. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Aguirre A, Planell JA and Engel E: Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun. 400:284–291. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Malinowski M, Pietraszek K, Perreau C, Boguslawski M, Decot V, Stoltz JF, Vallar L, Niewiarowska J, Cierniewski C, Maquart FX, et al: Effect of lumican on the migration of human mesenchymal stem cells and endothelial progenitor cells: Involvement of matrix metalloproteinase-14. PLoS One. 7:e507092012. View Article : Google Scholar : PubMed/NCBI

31 

García-Alfonso P, Grande E, Polo E, Afonso R, Reina JJ, Jorge M, Campos JM, Martínez V, Angeles C and Montagut C: The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status. Angiogenesis. 17:805–821. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Wang Z, Wang M, Yang F, Nie W, Chen F, Xu J and Guan X: Multitargeted antiangiogenic tyrosine kinase inhibitors combined to chemotherapy in metastatic breast cancer: A systematic review and meta-analysis. Eur J Clin Pharmacol. 70:531–538. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Ohara T, Noma K, Urano S, Watanabe S, Nishitani S, Tomono Y, Kimura F, Kagawa S, Shirakawa Y and Fujiwara T: A novel synergistic effect of iron depletion on antiangiogenic cancer therapy. Int J Cancer. 132:2705–2713. 2013. View Article : Google Scholar

34 

Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T and Saijo Y: Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells. 25:1618–1626. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Kolluri KK, Laurent GJ and Janes SM: Mesenchymal stem cells as vectors for lung cancer therapy. Respiration. 85:443–451. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T, Matsumoto K, Nakamura T, Nukiwa T and Saijo Y: Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther. 14:894–903. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Zhang MH, Hu YD, Xu Y, Xiao Y, Luo Y, Song ZC and Zhou J: Human mesenchymal stem cells enhance autophagy of lung carcinoma cells against apoptosis during serum deprivation. Int J Oncol. 42:1390–1398. 2013.PubMed/NCBI

38 

Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesen-chymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar

39 

Lee MJ, Heo SC, Shin SH, Kwon YW, Do EK, Suh DS, Yoon MS and Kim JH: Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. Int J Biochem Cell Biol. 45:1869–1877. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Chen Q, Cheng P, Song N, Yin T, He H, Yang L, Chen X and Wei Y: Antitumor activity of placenta-derived mesenchymal stem cells producing pigment epithelium-derived factor in a mouse melanoma model. Oncol Lett. 4:413–418. 2012.

41 

Li Y, Zhao Y, Cheng Z, Zhan J, Sun X, Qian H, Zhu W and Xu W: Mesenchymal stem cell-like cells from children foreskin inhibit the growth of SGC-7901 gastric cancer cells. Exp Mol Pathol. 94:430–437. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Katsuda T, Kosaka N, Takeshita F and Ochiya T: The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 13:1637–1653. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Mader EK, Butler G, Dowdy SC, Mariani A, Knutson KL, Federspiel MJ, Russell SJ, Galanis E, Dietz AB and Peng KW: Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J Transl Med. 11:202013. View Article : Google Scholar : PubMed/NCBI

44 

Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U and Shah K: Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells. 31:1706–1714. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z and Altaner C: Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther. 18:223–231. 2010. View Article : Google Scholar :

46 

Kucerova L, Altanerova V, Matuskova M, Tyciakova S and Altaner C: Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 67:6304–6313. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2016
Volume 35 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Scherzed, A., Hackenberg, S., Froelich, K., Rak, K., Schendzielorz, P., Gehrke, T. ... Kleinsasser, N. (2016). The differentiation of hMSCs counteracts their migration capability and pro‑angiogenic effects in vitro. Oncology Reports, 35, 219-226. https://doi.org/10.3892/or.2015.4383
MLA
Scherzed, A., Hackenberg, S., Froelich, K., Rak, K., Schendzielorz, P., Gehrke, T., Hagen, R., Kleinsasser, N."The differentiation of hMSCs counteracts their migration capability and pro‑angiogenic effects in vitro". Oncology Reports 35.1 (2016): 219-226.
Chicago
Scherzed, A., Hackenberg, S., Froelich, K., Rak, K., Schendzielorz, P., Gehrke, T., Hagen, R., Kleinsasser, N."The differentiation of hMSCs counteracts their migration capability and pro‑angiogenic effects in vitro". Oncology Reports 35, no. 1 (2016): 219-226. https://doi.org/10.3892/or.2015.4383