|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Smith RA, Manassaram-Baptiste D, Brooks D,
Doroshenk M, Fedewa S, Saslow D, Brawley OW and Wender R: Cancer
screening in the United States, 2015: A review of current American
Cancer Society guidelines and current issues in cancer screening.
CA Cancer J Clin. 65:30–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Louis DN, Perry A, Burger P, Ellison DW,
Reifenberger G, von D eimling A, Aldape K, Brat D, Collins VP,
Eberhart C, et al: International Society Of Neuropathology -
Haarlem: International Society Of Neuropathology - Haarlem
consensus guidelines for nervous system tumor classification and
grading. Brain Phatol. 24:429–435. 2014. View Article : Google Scholar
|
|
5
|
Brodbelt A, Greenberg D, Winters T,
Williams M, Vernon S and Collins VP; (UK) National Cancer
Information Network Brain Tumour Group: Glioblastoma in England:
2007–2011. Eur J Cancer. 51:533–542. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Konovalov AN, Potapov AA, Loshakov VA,
Oliushin VE, Kornienko VN, Iartsev VV, Pronin IN, Korshunov AG,
Golanov AV, Kobiakov GL, et al: Standards, guidelines, and options
in the treatment of glial tumors of the brain in adults. Zh Vopr
Neirokhir Im NN Burdenko. 2:3–11. 2006.In Russian.
|
|
8
|
Xhumari A, Rroji A, Enesi E, Bushati T,
Sallabanda Diaz K and Petrela M: Glioblastoma after AVM
radiosurgery. Case report and review of the literature. Acta
Neurochir. 157:889–895. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Greto D, Livi L, Bonomo P, Masi L, Detti
B, Meattini I, Mangoni M, Doro R, Favuzza V, Cipressi S, et al:
Cyberknife stereotactic radiosurgery for the re-irradiation of
brain lesions: A single-centre experience. Radiol Med. 119:721–726.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tsao MN, Mehta MP, Whelan TJ, Morris DE,
Hayman JA, Flickinger JC, Mills M, Rogers CL and Souhami L: The
American Society for Therapeutic Radiology and Oncology (ASTRO)
evidence-based review of the role of radiosurgery for malignant
glioma. Int J Radiat Oncol Biol Phys. 63:47–55. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Freund D, Zhang R, Sanders M and Newhauser
W: Predictive risk of radiation induced cerebral necrosis in
pediatric brain cancer patients after VMAT versus proton therapy.
Cancers. 7:617–630. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kamiya-Matsuoka C and Gilbert MR: Treating
recurrent glioblastoma: An update. CNS Oncol. 4:91–104. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dincoglan F, Beyzadeoglu M, Sager O,
Demiral S, Gamsiz H, Uysal B, Ebruli C, Akin M, Oysul K, Sirin S,
et al: Management of patients with recurrent glioblastoma using
hypofractionated stereotactic radiotherapy. Tumori. 101:179–184.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kickingereder P, Hamisch C, Suchorska B,
Galldiks N, Visser-Vandewalle V, Goldbrunner R, Kocher M, Treuer H,
Voges J and Ruge MI: Low-dose rate stereotactic iodine-125
brachytherapy for the treatment of inoperable primary and recurrent
glioblastoma: Single-center experience with 201 cases. J
Neurooncol. 120:615–623. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y,
Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, et
al: Total body 100-mGy X-irradiation does not induce Alzheimer's
disease-like pathogenesis or memory impairment in mice. J Radiat
Res. 55:84–96. 2014. View Article : Google Scholar :
|
|
16
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al European Organisation for Research and Treatment of Cancer
Brain Tumor and Radiotherapy Groups: National Cancer Institute of
Canada Clinical Trials Group: Radiotherapy plus concomitant and
adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Taal W, Bromberg JE and van den Bent MJ:
Chemotherapy in glioma. CNS Oncol. 4:179–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zorzan M, Giordan E, Redaelli M, Caretta A
and Mucignat-Caretta C: Molecular targets in glioblastoma. Future
Oncol. 11:1407–1420. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Deutsch MB, Panageas KS, Lassman AB and
Deangelis LM: Steroid management in newly diagnosed glioblastoma. J
Neurooncol. 113:111–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ghiaseddin A and Peters KB: Use of
bevacizumab in recurrent glioblastoma. CNS Oncol. 4:157–169. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bryukhovetskyi IS, Bryukhovetskyi AS,
Kumeiko VV, Mischenko PV and Khotimchenko YS: Stem cells in
carcinogenesis of glioblastoma multiforme. Cell Transplant Tissue
Eng. 8:13–19. 2013.
|
|
22
|
Chen D: Tumor formation and drug
resistance properties of human glioblastoma side population cells.
Mol Med Rep. 11:4309–4314. 2015.PubMed/NCBI
|
|
23
|
Liu Y, Zhang X, Liu J, Hou G, Zhang S and
Zhang J: Everolimus in combination with letrozole inhibit human
breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: An
experimental study. Tumour Biol. 35:1275–1286. 2014. View Article : Google Scholar
|
|
24
|
Li C, Lee CJ and Simeone DM:
Identification of human pancreatic cancer stem cells. Methods Mol
Biol. 568:161–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Duesberg P, Mandrioli D, McCormack A and
Nicholson JM: Is carcinogenesis a form of speciation? Cell Cycle.
10:2100–2114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Altman J: Are new neurons formed in the
brains of adult mammals? Science. 135:1127–1128. 1962. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lepousez G, Nissant A and Lledo PM: Adult
neurogenesis and the future of the rejuvenating brain circuits.
Neuron. 86:387–401. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Doetsch F, Caillé I, Lim DA,
García-Verdugo JM and Alvarez-Buylla A: Subventricular zone
astrocytes are neural stem cells in the adult mammalian brain.
Cell. 97:703–716. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Maldonado-Soto AR, Oakley DH, Wichterle H,
Stein J, Doetsch FK and Henderson CE: Stem cells in the nervous
system. Am J Phys Med Rehabil. 93(Suppl 3): S132–S144. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang S and Cui W: Sox2, a key factor in
the regulation of pluripotency and neural differentiation. World J
Stem Cells. 6:305–311. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bryukhovetskiy A, Shevchenko V, Kovalev S,
Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the
novel paradigm of proteome-based cell therapy of tumors: Through
comparative proteome mapping of tumor stem cells and tissuespecific
stem cells of humans. Cell Transplant. 23(Suppl 1): S151–S170.
2014. View Article : Google Scholar
|
|
32
|
Vescovi AL, Galli R and Reynolds BA: Brain
tumour stem cells. Nat Rev Cancer. 6:425–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Amendola D, Nardella M, Guglielmi L,
Cerquetti L, Carico E, Alesi V, Porru M, Leonetti C, Bearzi C,
Rizzi R, et al: Human placenta-derived neurospheres are susceptible
to transformation after extensive in vitro expansion. Stem Cell Res
Ther. 5(55)2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wu W, He Q, Li X, Zhang X, Lu A, Ge R,
Zhen H, Chang AE, Li Q and Shen L: Long-term cultured human neural
stem cells undergo spontaneous transformation to tumor-initiating
cells. Int J Biol Sci. 7:892–901. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ilkanizadeh S, Lau J, Huang M, Foster DJ,
Wong R, Frantz A, Wang S, Weiss WA and Persson AI: Glial
progenitors as targets for transformation in glioma. Adv Cancer
Res. 121:1–65. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schichor C, Albrecht V, Korte B, Buchner
A, Riesenberg R, Mysliwietz J, Paron I, Motaln H, Turnšek TL,
Jürchott K, et al: Mesenchymal stem cells and glioma cells form a
structural as well as a functional syncytium in vitro. Exp Neurol.
234:208–219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wurmser AE and Gage FH: Stem cells: Cell
fusion causes confusion. Nature. 416:485–487. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Friedmann-Morvinski D: Glioblastoma
heterogeneity and cancer cell plasticity. Crit Rev Oncog.
19:327–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rahman M, Reyner K, Deleyrolle L, Millette
S, Azari H, Day BW, Stringer BW, Boyd AW, Johns TG, Blot V, et al:
Neurosphere and adherent culture conditions are equivalent for
malignant glioma stem cell lines. Anat Cell Biol. 48:25–35. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fine HA: New strategies in glioblastoma:
Exploiting the new biology. Clin Cancer Res. 21:1984–1988. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pavon LF, Marti LC, Sibov TT, Malheiros
SM, Brandt RA, Cavalheiro S and Gamarra LF: In vitro analysis of
neurospheres derived from glioblastoma primary culture: A novel
methodology paradigm. Front Neurol. 4(214)2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Golebiewska A, Bougnaud S, Stieber D,
Brons NH, Vallar L, Hertel F, Klink B, Schröck E, Bjerkvig R and
Niclou SP: Side population in human glioblastoma is non-tumorigenic
and characterizes brain endothelial cells. Brain. 136:1462–1475.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng
X, Wen L and Yang X: Identification of cancer stem-like cells in
the C6 glioma cell line and the limitation of current
identification methods. In Vitro Cell Dev Biol Anim. 44:280–289.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Neradil J and Veselska R: Nestin as a
marker of cancer stem cells. Cancer Sci. 106:803–811. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Piccirillo SG, Binda E, Fiocco R, Vescovi
AL and Shah K: Brain cancer stem cells. J Mol Med Berl.
87:1087–1095. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen R, Nishimura MC, Bumbaca SM,
Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour
LL, Rivers CS, et al: A hierarchy of self-renewing tumor-initiating
cell types in glioblastoma. Cancer Cell. 17:362–375. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Barrett LE, Granot Z, Coker C, Iavarone A,
Hambardzumyan D, Holland EC, Nam HS and Benezra R: Self-renewal
does not predict tumor growth potential in mouse models of
high-grade glioma. Cancer Cell. 21:11–24. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huang Z, Cheng L, Guryanova OA, Wu Q and
Bao S: Cancer stem cells in glioblastoma - molecular signaling and
therapeutic targeting. Protein Cell. 1:638–655. 2010. View Article : Google Scholar
|
|
49
|
Bryukhovetskii IS, Bryukhovetskii AS and
Khotimchenko YS: New biomolecular approaches to the treatment of
glioblastoma multiforme. Bull Exp Biol Med. 158:794–799. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bryukhovetskiy IS, Bryukhovetskiy AS,
Mischenko PV and Khotimchenko YS: The role of systemic migration
and homing mechanisms of stem cells in the development of malignant
tumors of the central nervous system and the development of new
cancer therapies. Russian Biotherapeutic J. 4:3–12. 2013.In
Russian.
|
|
51
|
Bryukhovetskiy IS, Mischenko PV, Tolok EV,
Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional
migration of adult hematopoeitic progenitors to C6 glioma in vitro.
Oncol Lett. 9:1839–1844. 2015.PubMed/NCBI
|
|
52
|
Bryukhovetskiy IS, Bryukhovetskiy AS,
Mischenko PV, et al: Migration of human hematopoietic stem cells to
cells of glioblastoma line U87 in vitro. Russ Biotherapeutic J.
4:31–36. 2014.
|
|
53
|
Kang R, Zhang Q, Zeh HJ III, Lotze MT and
Tang D: HMGB1 in cancer: Good, bad, or both? Clin Cancer Res.
19:4046–4057. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bordji K, Grandval A, Cuhna-Alves L,
Lechapt-Zalcman E and Bernaudin M: Hypoxia-inducible factor-2α
(HIF-2α), but not HIF-1α, is essential for hypoxic induction of
class III β-tubulin expression in human glioblastoma cells. FEBS J.
281:5220–5236. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Moore XL, Lu J, Sun L, Zhu CJ, Tan P and
Wong MC: Endothelial progenitor cells' 'homing' specificity to
brain tumors. Gene Ther. 11:811–818. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rolando C, Parolisi R, Boda E, Schwab ME,
Rossi F and Buffo A: Distinct roles of Nogo-a and Nogo receptor 1
in the homeostatic regulation of adult neural stem cell function
and neuroblast migration. J Neurosci. 32:17788–17799. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Aboody KS, Brown A, Rainov NG, Bower KA,
Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al:
Neural stem cells display extensive tropism for pathology in adult
brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA.
97:12846–12851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Aboody KS, Najbauer J, Metz MZ, D'Apuzzo
M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats
RA, et al: Neural stem cell-mediated enzyme/prodrug therapy for
glioma: Preclinical studies. Sci Transl Med.
5:184ra592013.PubMed/NCBI
|
|
59
|
Schnarr K, Mooney R, Weng Y, Zhao D,
Garcia E, Armstrong B, Annala AJ, Kim SU, Aboody KS and Berlin JM:
Gold nanoparticle-loaded neural stem cells for photothermal
ablation of cancer. Adv Healthc Mater. 2:976–982. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ahmed AU, Thaci B, Alexiades NG, Han Y,
Qian S, Liu F, Balyasnikova IV, Ulasov IY, Aboody KS and Lesniak
MS: Neural stem cell-based cell carriers enhance therapeutic
efficacy of an oncolytic adenovirus in an orthotopic mouse model of
human glioblastoma. Mol Ther. 19:1714–1726. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chekhonin VI, Bryukhovetskiy AS, Semenova
AB, Ukhova OV and Pavlov KA: The antitumor agent based
immunoliposomalnoy biological construction, its production method
and vector delivery to the central nervous system with the
malignancy. RF Patent 2336901. Filed August 10, 2007; issued
October 27, 2008.
|
|
62
|
Intercellular interactions. 2nd edition.
revised and supplemented. Meditsina Publishers; Moscow: pp.
p2882003
|
|
63
|
Yang AP, Tang LT and Chen JM: Inhibitory
effect of bone marrow mesenchymal stem cells on lymphoma cell
proliferation. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 22:1610–1615.
2014.In Chinese. PubMed/NCBI
|
|
64
|
Wang M, Cai J, Huang F, Zhu M, Zhang Q,
Yang T, Zhang X, Qian H and Xu W: Pre-treatment of human umbilical
cordderived mesenchymal stem cells with interleukin-6 abolishes
their growth-promoting effect on gastric cancer cells. Int J Mol
Med. 35:367–375. 2015.
|
|
65
|
Ahn JO, Chae JS, Coh YR, Jung WS, Lee HW,
Shin IS, Kang SK and Youn HY: Human adipose tissue-derived
mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and
in vivo. Anticancer Res. 34:4839–4847. 2014.PubMed/NCBI
|
|
66
|
Bryukhovetskiy IS, Mischenko PV, Tolok EV,
et al: Interaction of hematopoietic stem cells and tumor cells in
vitro. Pa Med J. 58:31–37. 2014.In Russian.
|
|
67
|
He X, Li B, Shao Y, Zhao N, Hsu Y, Zhang Z
and Zhu L: Cell fusion between gastric epithelial cells and
mesenchymal stem cells results in epithelial-to-mesenchymal
transition and malignant transformation. BMC Cancer. 15(24)2015.
View Article : Google Scholar
|
|
68
|
Sumi S and Yanai G: Fusion of mesenchymal
stem cells and islet cells for cell therapy. Methods Mol Biol.
1313:107–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Aguilar PS, Baylies MK, Fleissner A,
Helming L, Inoue N, Podbilewicz B, Wang H and Wong M: Genetic basis
of cell-cell fusion mechanisms. Trends Genet. 29:427–437. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Willkomm L and Bloch W: State of the art
in cell-cell fusion. Methods Mol Biol. 1313:1–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fatima A, Hescheler J and Šaric T:
Chromosome tracking in fused cells by single nucleotide
polymorphisms. Methods Mol Biol. 1313:95–106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bagci-Onder T, Du W, Figueiredo JL,
Martinez-Quintanilla J and Shah K: Targeting breast to brain
metastatic tumours with death receptor ligand expressing
therapeutic stem cells. Brain. 138:1710–1721. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ezzelarab M, Ezzelarab C, Wilhite T, Kumar
G, Hara H, Ayares D and Cooper DK: Genetically-modified pig
mesenchymal stromal cells: Xenoantigenicity and effect on human
T-cell xenoresponses. Xenotransplantation. 18:183–195. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
He HL, Liu L, Chen QH, Cai SX, Han JB, Hu
SL, Chun P, Yang Y, Guo FM, Huang YZ, et al: MSCs modified with
ACE2 restore endothelial function following LPS challenge by
inhibiting the activation of RAS. J Cell Physiol. 230:691–701.
2015. View Article : Google Scholar
|
|
75
|
Sainathan SK, Hanna EM, Gong Q, Bishnupuri
KS, Luo Q, Colonna M, White FV, Croze E, Houchen C, Anant S, et al:
Granulocyte macrophage colony-stimulating factor ameliorates
DSS-induced experimental colitis. Inflamm Bowel Dis. 14:88–99.
2008. View Article : Google Scholar
|
|
76
|
Najafi M, Fardid R, Hadadi G and Fardid M:
The mechanisms of radiation-induced bystander effect. J Biomed Phys
Eng. 4:163–172. 2014.
|
|
77
|
Marín A, Martín M, Liñán O, Alvarenga F,
López M, Fernández L, Büchser D and Cerezo L: Bystander effects and
radiotherapy. Rep Pract Oncol Radiother. 20:12–21. 2015. View Article : Google Scholar
|
|
78
|
Xiao L, Liu W, Li J, Xie Y, He M, Fu J,
Jin W and Shao C: Irradiated U937 cells trigger inflammatory
bystander responses in human umbilical vein endothelial cells
through the p38 pathway. Radiat Res. 182:111–121. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Barani IJ and Larson DA: Radiation therapy
of glioblastoma. Cancer Treat Res. 163:49–73. 2015. View Article : Google Scholar
|
|
80
|
Dolecek TA, Propp JM, Stroup NE and
Kruchko C: CBTRUS statistical report: Primary brain and central
nervous system tumors diagnosed in United States in 2005–2009.
Neuro Oncol. 14(Suppl 5): v1–v49. 2012. View Article : Google Scholar :
|
|
81
|
Friedmann-Morvinski D: Glioblastoma
heterogeneity and cancer cell plasticity. Crit Rev Oncog.
19:327–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Labussière M, Boisselier B, Mokhtari K, Di
Stefano AL, Rahimian A, Rossetto M, Ciccarino P, Saulnier O,
Paterra R, Marie Y, et al: Combined analysis of TERT, EGFR, and IDH
status defines distinct prognostic glioblastoma classes. Neurology.
83:1200–1206. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lee JK, Joo KM, Lee J, Yoon Y and Nam DH:
Targeting the epithelial to mesenchymal transition in glioblastoma:
The emerging role of MET signaling. Onco Targets Ther. 7:1933–1944.
2014.PubMed/NCBI
|
|
84
|
Lassen U, Sorensen M, Gaziel TB,
Hasselbalch B and Poulsen HS: Phase II study of bevacizumab and
temsirolimus combination therapy for recurrent glioblastoma
multiforme. Anticancer Res. 33:1657–1660. 2013.PubMed/NCBI
|
|
85
|
Chinnaiyan P, Won M, Wen PY, Rojiani AM,
Wendland M, Dipetrillo TA, Corn BW and Mehta MP: RTOG 0913: A phase
1 study of daily everolimus (RAD001) in combination with radiation
therapy and temozolomide in patients with newly diagnosed
glioblastoma. Int J Radiat Oncol Biol Phys. 86:880–884. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Venkatesh HS, Chaumeil MM, Ward CS,
Haas-Kogan DA, James CD and Ronen SM: Reduced phosphocholine and
hyperpolarized lactate provide magnetic resonance biomarkers of
PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol. 14:315–325.
2012. View Article : Google Scholar :
|
|
87
|
Gardner LB, Li Q, Park MS, Flanagan WM,
Semenza GL and Dang CV: Hypoxia inhibits G1/S transition
through regulation of p27 expression. J Biol Chem. 276:7919–7926.
2001. View Article : Google Scholar
|
|
88
|
Goda N, Ryan HE, Khadivi B, McNulty W and
Rickert RC: Hypoxia-inducible factor 1alpha is essential for cell
cycle arrest during hypoxia. Mol Cell Biol. 23:359–369. 2003.
View Article : Google Scholar :
|
|
89
|
Mjelle R, Hegre SA, Aas PA, Slupphaug G,
Drabløs F, Saetrom P and Krokan HE: Cell cycle regulation of human
DN A repair and chromatin remodeling genes. DNA Repair. 30:53–67.
2015. View Article : Google Scholar
|
|
90
|
Justus CR and Yang LV: GPR4 decreases
B16F10 melanoma cell spreading and regulates focal adhesion
dynamics through the G13/Rho signaling pathway. Exp Cell
Res. 334:100–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xiang L, Chi T, Tang Q, Yang X, Ou M, Chen
X, Yu X, Chen J, Ho RJ, Shao J, et al: A pentacyclic triterpene
natural product, ursolic acid and its prodrug US597 inhibit targets
within cell adhesion pathway and prevent cancer metastasis.
Oncotarget. 6:9295–9312. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bryukhovetskiy AS, Bryukhovetskiy IS,
Shevchenko VE and Davidov MI: Antitumor individual proteome-based
effective targeted cell preparation method for its preparation and
using of this drug for the treatment of cancer and other
malignancies. RF Patent 2335972. Filed December 24, 2012; issued
October 20, 2014.
|