Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2016 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2016 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer

  • Authors:
    • Haiyang Zhang
    • Yanjun Qu
    • Jingjing Duan
    • Ting Deng
    • Rui Liu
    • Le Zhang
    • Ming Bai
    • Jialu Li
    • Likun Zhou
    • Tao Ning
    • Hongli Li
    • Shaohua Ge
    • Hua Li
    • Guoguang Ying
    • Dingzhi Huang
    • Yi Ba
  • View Affiliations / Copyright

    Affiliations: Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China, Department of Gastroenterology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
  • Pages: 1135-1146
    |
    Published online on: November 26, 2015
       https://doi.org/10.3892/or.2015.4451
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gastric cancer is one of the most common malignant tumors worldwide; however, the efficacy of clinical treatment is limited. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been reported to play a key role in the development of cancer. They also provide novel candidates for targeted therapy. To date, in-depth studies on the molecular mechanisms of gastric cancer involving miRNAs are still absent. We previously reported that 5 miRNAs were identified as being significantly increased in gastric cancer, and the role of these miRNAs was investigated in the present study. By using bioinformatics tools, we found that more than 4,000 unique genes are potential downstream targets of gastric cancer miRNAs, and these targets belong to the protein class of nucleic acid binding, transcription factor, enzyme modulator, transferase and receptor. Pathway mapping showed that the targets of gastric cancer miRNAs are involved in the MAPK signaling pathway, pathways in cancer, the PI3K-Akt signaling pathway, the HTLV-1 signaling pathway and Ras signaling pathway, thus regulating cell growth, differentiation, apoptosis and metastasis. Analysis of the pathways related to miRNAs may provides potential drug targets for future therapy of gastric cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Fernández-Fernández FJ and Sesma P: Gastric cancer. Lancet. 374(1594): author reply. 1594–1595. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Hartgrink HH, Jansen EP, van Grieken NC and van de Velde CJ: Gastric cancer. Lancet. 374:477–490. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Yamaoka Y, Kato M and Asaka M: Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med. 47:1077–1083. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Tsugane S and Sasazuki S: Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer. 10:75–83. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Bae JM, Lee EJ and Guyatt G: Citrus fruit intake and stomach cancer risk: A quantitative systematic review. Gastric Cancer. 11:23–32. 2008. View Article : Google Scholar : PubMed/NCBI

6 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 131:11–29. 2007.

8 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Koturbash I, Zemp FJ, Pogribny I and Kovalchuk O: Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis. Mutat Res. 722:94–105. 2011. View Article : Google Scholar

10 

Peláez N and Carthew RW: Biological robustness and the role of microRNAs: A network perspective. Curr Top Dev Biol. 99:237–255. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Zhang H, Yang H, Zhang C, Jing Y, Wang C, Liu C, Zhang R, Wang J, Zhang J, Zen K, et al: Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci. 70:102–109. 2015. View Article : Google Scholar

12 

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C, et al: Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar

14 

Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, et al: A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 47:784–791. 2011. View Article : Google Scholar

15 

Wang C, Hu J, Lu M, Gu H, Zhou X, Chen X, Zen K, Zhang CY, Zhang T, Ge J, et al: A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep. 5:76102015. View Article : Google Scholar : PubMed/NCBI

16 

Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, Shi Y, Hu J, Guan X, Xia Z, et al: Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem. 59:658–666. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Esquela-Kerscher A and Slack FJ: oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Loscalzo J, Kohane I and Barabasi AL: Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol. 3:1242007. View Article : Google Scholar : PubMed/NCBI

19 

Taneja SS, Goddy G, Kibel AS, Penson DF and Wei JT: Prostate cancer detection using a novel computerized three-dimensional prostate biopsy template (Targetscan (Tm)): Results of a multi-center prospective data registry. J Urol. 181:712. 2009. View Article : Google Scholar

20 

Mi H and Thomas P: PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol Biol. 563:123–140. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Mi H, Guo N, Kejariwal A and Thomas PD: PANTHER version 6: Protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35:D247–D252. 2007. View Article : Google Scholar

22 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI

23 

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, okuda S, Tokimatsu T, et al: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36:D480–D484. 2008. View Article : Google Scholar :

24 

Han C, Yu Z, Duan Z and Kan Q: Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int. 2014:4283712014. View Article : Google Scholar : PubMed/NCBI

25 

Nohata N, Hanazawa T, enokida H and Seki N: microRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget. 3:9–21. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, et al: miR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 32:296–306. 2013. View Article : Google Scholar

27 

Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, Bertan C, Zanutto S, Perrone F, Camerini T, Gallino G, et al: miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 10:504–515. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Yan D, Dong XE, Chen X, Wang L, Lu C, Wang J, Qu J and Tu L: MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem. 284:29596–29604. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST and Ghoshal K: Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 283:33394–33405. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Wang F, Song G, Liu M, Li X and Tang H: miRNA-1 targets fibronectin1 and suppresses the migration and invasion of the Hep2 laryngeal squamous carcinoma cell line. FEBS Lett. 585:3263–3269. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Leone V, D'Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, Pallante P, Medeiros-Neto G and Fusco A: miR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha. J Clin endocrinol Metab. 96:E1388–E1398. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Li D, Liu Y, Li H, Peng JJ, Tan Y, Zou Q, Song XF, Du M, Yang ZH, Tan Y, et al: MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). FEBS Lett. 589:68–76. 2015. View Article : Google Scholar

33 

Li D, Yang P, Li H, Cheng P, Zhang L, Wei D, Su X, Peng J, Gao H, Tan Y, et al: MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 91:440–447. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Tominaga E, Yuasa K, Shimazaki S and Hijikata T: MicroRNA-1 targets Slug and endows lung cancer A549 cells with epithelial and anti-tumorigenic properties. Exp Cell Res. 319:77–88. 2013. View Article : Google Scholar

35 

Jung YJ, Kim JW, Park SJ, Min By, Jang ES, Kim NY, Jeong SH, Shin CM, Lee SH, Park YS, et al: c-Myc-mediated overexpression of miR-17-92 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol. 85:969–978. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, Lin SK, Kuo My and Tan CT: MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral oncol. 49:923–931. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Fan MQ, Huang CB, Gu Y, Xiao Y, Sheng JX and Zhong L: Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J Exp Clin Cancer Res. 32:212013. View Article : Google Scholar : PubMed/NCBI

38 

No authors listed. miR-20a facilitates metastasis of osteosarcoma cells to lung tissue. Bonekey Rep. 1:762012.PubMed/NCBI

39 

Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M and Enokida H: Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol. 10:396–404. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Li X, Zhang Z, Yu M, Li L, Du G, Xiao W and Yang H: Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (eGR2). Int J Mol Sci. 14:16226–16239. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Li X, Pan JH, Song B, Xiong EQ, Chen ZW, Zhou ZS and Su YP: Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 13:890–898. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Zhao S, Yao DS, Chen JY and Ding N: Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev. 14:2289–2293. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Zhao S, Yao D, Chen J, Ding N and Ren F: miR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One. 10:e01209052015. View Article : Google Scholar : PubMed/NCBI

44 

Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, Zhou M, Zou Q, Cao P and Cao K: miR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol Ther. 15:1340–1349. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Xie J, Liu M, Li Y, Nie Y, Mi Q and Zhao S: ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol. 11:495–502. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Yan H, Wu J, Liu W, Zuo Y, Chen S, Zhang S, Zeng M and Huang W: MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther. 21:1723–1734. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Guttilla IK and White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Li S, Li J, Fei BY, Shao D, Pan Y, Mo ZH, Sun BZ, Zhang D, Zheng X, Zhang M, et al: miR-27a promotes hepatocellular carcinoma cell proliferation through suppression of its target gene peroxisome proliferator-activated receptor γ. Chin Med J (Engl). 128:941–947. 2015. View Article : Google Scholar

49 

Acunzo M, Romano G, Palmieri D, Laganá A, Garofalo M, Balatti V, Drusco A, Chiariello M, Nana-Sinkam P and Croce CM: Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci USA. 110:8573–8578. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM and Aqeilan RI: miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 6:4920–4935. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Peng H, Wang X, Zhang P, Sun T, Ren X and Xia Z: miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. Int J Clin exp Pathol. 8:2259–2266. 2015.PubMed/NCBI

52 

Chen Z, Ma T, Huang C, Zhang L, Lv X, Xu T, Hu T and Li J: miR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells. Cell Signal. 25:2693–2701. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Deng Y, Bai H and Hu H: rs11671784 G/A variation in miR-27a decreases chemo-sensitivity of bladder cancer by decreasing miR-27a and increasing the target RUNX-1 expression. Biochem Biophys Res Commun. 458:321–327. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L and Wang Z: miR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol oncol. 119:125–130. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, et al: miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 36:894–903. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Zhang H, Li M, Han Y, Hong L, Gong T, Sun L and Zheng X: Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci. 55:2545–2551. 2010. View Article : Google Scholar

57 

Zhao X, Yang L and Hu J: Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 30:552011. View Article : Google Scholar : PubMed/NCBI

58 

Zhu H, Wu H, Liu X, evans BR, Medina DJ, Liu CG and Yang JM: Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 76:582–588. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Ren YQ, Fu F and Han J: miR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27. Med Sci Monit. 21:1297–1303. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Kariya A, Furusawa Y, Yunoki T, Kondo T and Tabuchi Y: A microRNA-27a mimic sensitizes human oral squamous cell carcinoma HSC-4 cells to hyperthermia through downregulation of Hsp110 and Hsp90. Int J Mol Med. 34:334–340. 2014.PubMed/NCBI

61 

Coutinho-Camillo CM, Lourenço SV, de Araújo Lima L, Kowalski LP and Soares FA: expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet. 208:382–389. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Hong JH, Roh KS, Suh SS, Lee S, Sung SW, Park JK, Byun JH and Kang JH: The expression of microRNA-34a is inversely correlated with c- MET and CDK6 and has a prognostic significance in lung adenocarcinoma patients. Tumour Biol. Jun 25–2015, (Epub ahead of print) http://dx.doi.org/10.1007/s13277-015-3428-9. View Article : Google Scholar

63 

Isosaka M, Niinuma T, Nojima M, Kai M, Yamamoto E, Maruyama R, Nobuoka T, Nishida T, Kanda T, Taguchi T, et al: A screen for epigenetically silenced microRNA genes in gastrointestinal stromal tumors. PLoS One. 10:e01337542015. View Article : Google Scholar : PubMed/NCBI

64 

Lin L, Jiang H, Huang M, Hou X, Sun X, Jiang X, Dong X, Sun X, Zhou B and Qiao H: Depletion of histone deacetylase 1 inhibits metastatic abilities of gastric cancer cells by regulating the miR-34a/CD44 pathway. Oncol Rep. 34:663–672. 2015.PubMed/NCBI

65 

Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Lu G, Sun Y, An S, Xin S, Ren X, Zhang D, Wu P, Liao W, Ding Y and Liang L: MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Exp Mol Pathol. 99:173–179. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Wei B, Huang QE, Huang SR, Mai W and Zhong XG: MicroRNA 34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET. Mol Med Rep. 12:5255–5261. 2015.PubMed/NCBI

68 

Yu L, Xiong J, Guo L, Miao L, Liu S and Guo F: The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: Involvement of let-7a and miR-34a microRNAs. Biometals. 28:879–890. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar

70 

Kasinski AL and Slack FJ: miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 72:5576–5587. 2012. View Article : Google Scholar : PubMed/NCBI

71 

He L, He X, Lowe SW and Hannon GJ: microRNAs join the p53 network - another piece in the tumour-suppression puzzle. Nat Rev Cancer. 7:819–822. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Qiao P, Li G, Bi W, Yang L, Yao L and Wu D: microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer. 15:4692015. View Article : Google Scholar : PubMed/NCBI

73 

Alemar B, Izetti P, Gregório C, Macedo GS, Castro MA, Osvaldt AB, Matte U and Ashton-Prolla P: miRNA-21 and miRNA-34a are potential minimally invasive biomarkers for the diagnosis of pancreatic ductal adenocarcinoma. Pancreas. Aug 10–2015.Epub ahead of print. PubMed/NCBI

74 

Shi Y and Huang A: effects of sorafenib on lung metastasis in rats with hepatocellular carcinoma: The role of microRNAs. Tumour Biol. May 31–2015.(Epub ahead of print) http://dx.doi.org/10.1007/s13277-015-3565-1. View Article : Google Scholar

75 

Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, Tian Q, Zha R, Zhan R and He X: MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis. 32:1641–1647. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Stiuso P, Potenza N, Lombardi A, Ferrandino I, Monaco A, Zappavigna S, Vanacore D, Mosca N, Castiello F, Porto S, et al: MicroRNA-423-5p promotes autophagy in cancer cells and is increased in serum from hepatocarcinoma patients treated with sorafenib. Mol Ther Nucleic Acids. 4:e2332015. View Article : Google Scholar : PubMed/NCBI

77 

Liu J, Wang X, Yang X, Liu Y, Shi Y, Ren J and Guleng B: miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett. 347:98–104. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Lu X and Lu J: The significance of detection of serum miR-423-5p and miR-484 for diagnosis of colorectal cancer. Clin Lab. 61:187–190. 2015.PubMed/NCBI

79 

Ali S, Saleh H, Sethi S, Sarkar FH and Philip PA: MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer. 107:1354–1360. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Zhao H, Gao A, Zhang Z, Tian R, Luo A, Li M, Zhao D, Fu L, Fu L, Dong JT, et al: Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumour Biol. 36:4763–4771. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Yan W, Liu Y, Yang P, Wang Z, You Y and Jiang T: MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype. Oncotarget. 6:11676–11682. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Wang D, Qiu C, Zhang H, Wang J, Cui Q and Yin Y: Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: From functions to targets. PLoS One. 5:e130672010. View Article : Google Scholar : PubMed/NCBI

83 

Lv H, Pei J, Liu H, Wang H and Liu J: A polymorphism site in the pre-miR-34a coding region reduces miR-34a expression and promotes osteosarcoma cell proliferation and migration. Mol Med Rep. 10:2912–2916. 2014.PubMed/NCBI

84 

Kisseljov FL: MicroRNAs and cancer. Mol Biol. 48:197–206. 2014. View Article : Google Scholar

85 

Tutar L, Tutar E and Tutar Y: MicroRNAs and cancer; an overview. Curr Pharm Biotechnol. 15:430–437. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Li Y, Che Q, Bian Y, Zhou Q, Jiang F, Tong H, Ke J, Wang K and Wan XP: Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. Int J oncol. 47:1017–1024. 2015.PubMed/NCBI

87 

Zhao L, Wang Y, Yan Q, Lv W, Zhang Y and He S: Exogenous hydrogen sulfide exhibits anti-cancer effects though p38 MAPK signaling pathway in C6 glioma cells. Biol Chem. 396:1247–1253. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Yan H, Xin S, Wang H, Ma J, Zhang H and Wei H: Baicalein inhibits MMP-2 expression in human ovarian cancer cells by suppressing the p38 MAPK-dependent NF-κB signaling pathway. Anticancer Drugs. 26:649–656. 2015.PubMed/NCBI

89 

Nakareangrit W, Thiantanawat A, Visitnonthachai D, Watcharasit P and Satayavivad J: Sodium arsenite inhibited genomic estrogen signaling but induced pERα (Ser118) via MAPK pathway in breast cancer cells. Environ Toxicol. Mar 2–2015.Epub ahead of print. View Article : Google Scholar

90 

Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol. Jul 18–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

91 

Xia P and Xu Xy: PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI

92 

Wang L, Wu J, Lu J, Ma R, Sun D and Tang J: Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines. Mol Med Rep. 11:931–939. 2015.

93 

Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein AM, Pavey S, van der Velden P, Out C, Jager MJ, et al: Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 92:2032–2038. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI

95 

O'Connell RM, Taganov KD, Boldin MP, Cheng G and Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 104:1604–1609. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, et al: miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 17:1627–1635. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, Wang S and Lin Y: Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 364:165–172. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, et al: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Graham RM, Middleton A, Benito DA, Uddin R, Zhang B, Walters W, Bregy A, Vanni S and Komotar RJ: Targeting cancer stem cells via inhibition of PI3K/AKT pathway alone and in combination with autophagy blockade. Mol Cancer Ther. 14:B392015. View Article : Google Scholar

100 

Prasad SB, Yadav SS, Das M, Modi A, Kumari S, Pandey LK, Singh S, Pradhan S and Narayan G: PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer. Cell oncol (Dordr). 38:215–225. 2015. View Article : Google Scholar

101 

Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/MTOR pathway as a therapeutic target in ovarian cancer. Gynecol oncol. 137:173–179. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Jin D, Yang JP, Hu JH, Wang LN and Zuo JL: MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain. Brain Res. 1599:158–167. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Fang F and Wang L, Zhang S, Fang Q, Hao F, Sun Y, Zhao L, Chen S, Liao H and Wang L: CD147 modulates autophagy through the PI3K/Akt/mTOR pathway in human prostate cancer PC-3 cells. Oncol Lett. 9:1439–1443. 2015.PubMed/NCBI

104 

Cárdenas A, Kong M, Alvarez A, Valdivia A, Quest AF and Leyton L: PAR-3 and Syndecan-4 are involved in astrocyte adhesion induced by neuronal Thy-1 ocyte adhesion. Glia. 63:E102. 2015.

105 

Xie M, He J, He C and Wei S: γ secretase inhibitor BMS-708163 reverses resistance to eGFR inhibitor via the PI3K/Akt pathway in lung cancer. J Cell Biochem. 116:1019–1027. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R and Cui J: YSY01A, a novel proteasome inhibitor, induces cell cycle arrest on G2 phase in MCF-7 cells via eRα and PI3K/Akt pathways. J Cancer. 6:319–326. 2015. View Article : Google Scholar

107 

Niu NK, Wang ZL, Pan ST, Ding HQ, Au GH, He ZX, Zhou ZW, Xiao G, Yang YX, Zhang X, et al: Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. Drug Des Devel Ther. 9:1555–1584. 2015.PubMed/NCBI

108 

Gatza ML, Watt JC and Marriott SJ: Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene. 22:5141–5149. 2003. View Article : Google Scholar : PubMed/NCBI

109 

Bai XT and Nicot C: miR-28-3p is a cellular restriction factor that inhibits human T cell leukemia virus, type 1 (HTLV-1) replication and virus infection. J Biol Chem. 290:5381–5390. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Drosten M, Sum EY, Lechuga CG, Simón-Carrasco L, Jacob HK, García-Medina R, Huang S, Beijersbergen RL, Bernards R and Barbacid M: Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/erk signaling pathway. Proc Natl Acad Sci USA. 111:15155–15160. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Manousaridis I, Mavridou S, Goerdt S, Leverkus M and Utikal J: Cutaneous side effects of inhibitors of the RAS/RAF/MeK/eRK signalling pathway and their management. J Eur Acad Dermatol Venereol. 27:11–18. 2013. View Article : Google Scholar

112 

Noser JA, Sakuma R, Lee PWK and Ikeda Y: The Ras/Raf-1/MeK/eRK signaling pathway dictates host cell permissiveness to VSV infection. Mol Ther. 13:S371. 2006. View Article : Google Scholar

113 

Dancey JE: Agents targeting ras signaling pathway. Curr Pharm Des. 8:2259–2267. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang H, Qu Y, Duan J, Deng T, Liu R, Zhang L, Bai M, Li J, Zhou L, Ning T, Ning T, et al: Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer. Oncol Rep 35: 1135-1146, 2016.
APA
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L. ... Ba, Y. (2016). Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer. Oncology Reports, 35, 1135-1146. https://doi.org/10.3892/or.2015.4451
MLA
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L., Bai, M., Li, J., Zhou, L., Ning, T., Li, H., Ge, S., Li, H., Ying, G., Huang, D., Ba, Y."Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer". Oncology Reports 35.2 (2016): 1135-1146.
Chicago
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L., Bai, M., Li, J., Zhou, L., Ning, T., Li, H., Ge, S., Li, H., Ying, G., Huang, D., Ba, Y."Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer". Oncology Reports 35, no. 2 (2016): 1135-1146. https://doi.org/10.3892/or.2015.4451
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang H, Qu Y, Duan J, Deng T, Liu R, Zhang L, Bai M, Li J, Zhou L, Ning T, Ning T, et al: Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer. Oncol Rep 35: 1135-1146, 2016.
APA
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L. ... Ba, Y. (2016). Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer. Oncology Reports, 35, 1135-1146. https://doi.org/10.3892/or.2015.4451
MLA
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L., Bai, M., Li, J., Zhou, L., Ning, T., Li, H., Ge, S., Li, H., Ying, G., Huang, D., Ba, Y."Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer". Oncology Reports 35.2 (2016): 1135-1146.
Chicago
Zhang, H., Qu, Y., Duan, J., Deng, T., Liu, R., Zhang, L., Bai, M., Li, J., Zhou, L., Ning, T., Li, H., Ge, S., Li, H., Ying, G., Huang, D., Ba, Y."Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer". Oncology Reports 35, no. 2 (2016): 1135-1146. https://doi.org/10.3892/or.2015.4451
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team