You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Arzumanyan A, Reis HM and Feitelson MA: Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 13:123–135. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Squires RH, Ng V, Romero R, Ekong U, Hardikar W, Emre S and Mazariegos GV: Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 59:112–131. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lo CM: Liver transplantation in 2012: Transplantation for liver cancer - more with better results. Nat Rev Gastroenterol Hepatol. 10:74–76. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lie PP, Cheng CY and Mruk DD: Signalling pathways regulating the blood-testis barrier. Int J Biochem Cell Biol. 45:621–625. 2013. View Article : Google Scholar : | |
|
Kandori H, Sudo Y and Furutani Y: Protein-protein interaction changes in an archaeal light-signal transduction. J Biomed Biotechnol. 2010(424760)2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chakraborty C, Doss CGP, Chen L and Zhu H: Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using 'in silico pharmacology'. Curr Protein Pept Sci. 15:561–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pal I and Mandal M: PI3K and Akt as molecular targets for cancer therapy: Current clinical outcomes. Acta Pharmacol Sin. 33:1441–1458. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E and Lothe RA: Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 1855:104–121. 2015. | |
|
Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA and McCubrey JA: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia. 17:590–603. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, et al: Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol. 32:2951–2958. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y and Farajnia S: Natural inhibitors of PI3K/AKT signaling in breast cancer: Emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res. 93:1–10. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuoka T and Yashiro M: The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel). 6:1441–1463. 2014. View Article : Google Scholar | |
|
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J and Su B: SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 127:125–137. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Manning BD and Cantley LC: AKT/PKB signaling: Navigating downstream. Cell. 129:1261–1274. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM and Donner DB: NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 401:82–85. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y and Wahl LM: Production of matrix metalloproteinase-9 by activated human monocytes involves a phosphatidylinositol-3 kinase/Akt/IKKalpha/NF-kappaB pathway. J Leukoc Biol. 78:259–265. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Vandermoere F, El Yazidi-Belkoura I, Adriaenssens E, Lemoine J and Hondermarck H: The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene. 24:5482–5491. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tu CC, Cheng LH, Hsu HH, Chen LM, Lin YM, Chen MC, Lee NH, Tsai FJ, Huang CY and Wu WJ: Activation of snail and EMT-like signaling via the IKKαβ/NF-κB pathway in Apicidin-resistant HA22T hepatocellular carcinoma cells. Chin J Physiol. 56:326–333. 2013. View Article : Google Scholar | |
|
Noh JH, Bae HJ, Eun JW, Shen Q, Park SJ, Kim HS, Nam B, Shin WC, Lee EK, Lee K, et al: HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res. 74:1728–1738. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Cao X, Wang C, Hou L, Nie J, Zhou M and Feng Y: An antitumor peptide from Musca domestica pupae (MATP) induces apoptosis in HepG2 cells through a JNK-mediated and Akt-mediated NF-κB pathway. Anticancer Drugs. 23:827–835. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L, Kaneko S, Coppola D and Cheng JQ: Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem. 285:3815–3824. 2010. View Article : Google Scholar | |
|
Wang CY, Tsai AC, Peng CY, Chang YL, Lee KH, Teng CM and Pan SL: Dehydrocostuslactone suppresses angiogenesis in vitro and in vivo through inhibition of Akt/GSK-3β and mTOR signaling pathways. PLoS One. 7:e311952012. View Article : Google Scholar | |
|
Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, Schreiber EM, Day BW and Liu B: APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase. Mol Cell. 32:652–661. 2008. View Article : Google Scholar | |
|
Bauer L, Langer R, Becker K, Hapfelmeier A, Ott K, Novotny A, Höfler H and Keller G: Expression profiling of stem cell-related genes in neoadjuvant-treated gastric cancer: A NOTCH2, GSK3B and β-catenin gene signature predicts survival. PLoS One. 7:e445662012. View Article : Google Scholar | |
|
Hsieh CH, Cheng LH, Hsu HH, Ho TJ, Tu CC, Lin YM, Chen MC, Tsai FJ, Hsieh YL and Huang CY: Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the Wnt/β-catenin signaling pathway and MMP-2 expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic effect. Biosci Biotechnol Biochem. 77:2397–2404. 2013. View Article : Google Scholar | |
|
Mavila N, James D, Utley S, Cu N, Coblens O, Mak K, Rountree CB, Kahn M and Wang KS: Fibroblast growth factor receptor-mediated activation of AKT-β-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS One. 7:e504012012. View Article : Google Scholar | |
|
Liu L, Dai Y, Chen J, Zeng T, Li Y, Chen L, Zhu YH, Li J, Li Y, Ma S, et al: Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3β/Snail signaling. Hepatology. 59:531–543. 2014. View Article : Google Scholar | |
|
Gotoh J, Obata M, Yoshie M, Kasai S and Ogawa K: Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis. 24:435–442. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS and Kim CW: Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 31:2187–2198. 2012. View Article : Google Scholar | |
|
Niault TS and Baccarini M: Targets of Raf in tumorigenesis. Carcinogenesis. 31:1165–1174. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, et al: Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 44:133–139. 2012. View Article : Google Scholar | |
|
Barthwal MK, Sathyanarayana P, Kundu CN, Rana B, Pradeep A, Sharma C, Woodgett JR and Rana A: Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J Biol Chem. 278:3897–3902. 2003. View Article : Google Scholar | |
|
Kim AH, Khursigara G, Sun X, Franke TF and Chao MV: Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol. 21:893–901. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zimmermann S and Moelling K: Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 286:1741–1744. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Kane LP, Mollenauer MN, Xu Z, Turck CW and Weiss A: Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol Cell Biol. 22:5962–5974. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Park HS, Kim MS, Huh SH, Park J, Chung J, Kang SS and Choi EJ: Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J Biol Chem. 277:2573–2578. 2002. View Article : Google Scholar | |
|
Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P and McLeish KR: p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem. 276:3517–3523. 2001. View Article : Google Scholar | |
|
Nishitani Y and Matsumoto H: Ethanol rapidly causes activation of JNK associated with ER stress under inhibition of ADH. FEBS Lett. 580:9–14. 2006. View Article : Google Scholar | |
|
Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG and Choi EJ: Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J Biol Chem. 278:13995–14001. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B and Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 3:973–982. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ and Vousden KH: Phosphorylation of HDM2 by Akt. Oncogene. 21:1955–1962. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Z, Ren L, Wei H, Lv J, Che X, Zhu Z, Jia J, Wang L, Lin G, Lu R, et al: Effects of Tyroserleutide on phosphatidylinositol 3′-kinase/AKT pathway in human hepatocellular carcinoma cell. J Drug Target. 22:146–155. 2014. View Article : Google Scholar | |
|
Wang C, Qi R, Li N, Wang Z, An H, Zhang Q, Yu Y and Cao X: Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepato-cellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 284:16183–16190. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Song J, Park S, Kim M and Shin I: Down-regulation of Notch-dependent transcription by Akt in vitro. FEBS Lett. 582:1693–1699. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Zhu Y, Xu J, Wu K, Li J, Xu W, Liu H, Wang S, Yin H, Chen L, et al: Notch1 activation promotes renal cell carcinoma growth via PI3K/Akt signaling. Cancer Sci. 103:1253–1258. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Huntzicker EG, Hötzel K, Choy L, Che L, Ross J, Pau G, Sharma N, Siebel CW, Chen X and French DM: Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology. 61:942–952. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Brana I, Berger R, Golan T, Haluska P, Edenfield J, Fiorica J, Stephenson J, Martin LP, Westin S, Hanjani P, et al: A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br J Cancer. 111:1932–1944. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fielhaber JA, Han YS, Tan J, Xing S, Biggs CM, Joung KB and Kristof AS: Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion. J Biol Chem. 284:24341–24353. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Zhang W, Li D and Zhan Q: Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem. 288:6552–6560. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504–3513. 2000. | |
|
Dunlop EA and Tee AR: Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21:827–835. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mamane Y, Petroulakis E, LeBacquer O and Sonenberg N: mTOR, translation initiation and cancer. Oncogene. 25:6416–6422. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Lui VW and Yeo W: Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 7:1149–1167. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Huang Y, Li J and Wang Z: The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 27:255–261. 2010. View Article : Google Scholar | |
|
Nissen NN1, Menon V, Bresee C, Tran TT, Annamalai A, Poordad F, Fair JH, Klein AS, Boland B and Colquhoun SD: Recurrent hepatocellular carcinoma after liver transplant: identifying the high-risk patient. HPB. 13:626–632. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nakae J, Kitamura T, Kitamura Y, Biggs WH III, Arden KC and Accili D: The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 4:119–129. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hay N: Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 1813:1965–1970. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nakae J, Kitamura T, Silver DL and Accili D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 108:1359–1367. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Khor TO, Gul YA, Ithnin H and Seow HF: Positive correlation between overexpression of phospho-BAD with phosphorylated Akt at serine 473 but not threonine 308 in colorectal carcinoma. Cancer Lett. 210:139–150. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Huang CS, Lee YR, Chen CS, Tu SH, Wang YJ, Lee CH, Chen LC, Chang HW, Chang CH, Chih-Ming S, et al: Long-term ethanol exposure causes human liver cancer cells to become resistant to mitomycin C treatment through the inactivation of bad-mediated apoptosis. Mol Carcinog. 49:728–738. 2010.PubMed/NCBI | |
|
Carrano AC and Pagano M: Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol. 153:1381–1390. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, et al: Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 11:420–432. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, Armbruster J, Fan L, Lee SA, Jiang L, et al: AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatology. 55:833–845. 2012. View Article : Google Scholar : | |
|
Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, et al: International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 58:782–797. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lin HK, Yeh S, Kang HY and Chang C: Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA. 98:7200–7205. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ma WL, Jeng LB, Lai HC, Liao PY and Chang C: Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Lett. 351:64–71. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nie H, Cao Q, Zhu L, Gong Y, Gu J and He Z: Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS One. 8:e616782013. View Article : Google Scholar : PubMed/NCBI | |
|
Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 63:1635–1647. 2014. View Article : Google Scholar | |
|
Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT and Fan ST: Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vasan N, Yelensky R, Wang K, Moulder S, Dzimitrowicz H, Avritscher R, Wang B, Wu Y, Cronin MT, Palmer G, et al: A targeted next-generation sequencing assay detects a high frequency of therapeutically targetable alterations in primary and metastatic breast cancers: Implications for clinical practice. Oncologist. 19:453–458. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kittaka N, Takemasa I, Takeda Y, Marubashi S, Nagano H, Umeshita K, Dono K, Matsubara K, Matsuura N and Monden M: Molecular mapping of human hepatocellular carcinoma provides deeper biological insight from genomic data. Eur J Cancer. 44:885–897. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chan J, Ko FC, Yeung YS, Ng IO and Yam JW: Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma. PLoS One. 6:e169842011. View Article : Google Scholar : PubMed/NCBI | |
|
Peroukides S, Bravou V, Varakis J, Alexopoulos A, Kalofonos H and Papadaki H: ILK overexpression in human hepatocellular carcinoma and liver cirrhosis correlates with activation of Akt. Oncol Rep. 20:1337–1344. 2008.PubMed/NCBI | |
|
Cui Y, Wu W, Zhou Y, Xie Q, Liu T, Jin J and Liu K: HSP27 expression levels are associated with the sensitivity of hepatocellular carcinoma cells to 17-allylamino-17-demethoxygeldanamycin. Future Oncol. 9:411–418. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nam SY, Seo HH, Park HS, An S, Kim JY, Yang KH, Kim CS, Jeong M and Jin YW: Phosphorylation of CLK2 at serine 34 and threonine 127 by AKT controls cell survival after ionizing radiation. J Biol Chem. 285:31157–31163. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Villagrasa P, Díaz VM, Viñas-Castells R, Peiró S, Del Valle-Pérez B, Dave N, Rodríguez-Asiain A, Casal JI, Lizcano JM, Duñach M, et al: Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene. 31:4022–4033. 2012. View Article : Google Scholar | |
|
Thirumurthi U, Shen J, Xia W, LaBaff AM, Wei Y, Li CW, Chang WC, Chen CH, Lin HK, Yu D, et al: MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Sci Signal. 7:ra712014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Yang HY, Shin J, Phan L, Fang L, Che TF, Su CH, Yeung SC and Lee MH: CDK inhibitor p57Kip2 is downregulated by Akt during HER2-mediated tumorigenicity. Cell Cycle. 12:935–943. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng L, Bai M, Mittal AK, El-Jouni W, Zhou J, Cohen DM, Zhou MI and Cohen HT: Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma. Cancer Res. 73:5371–5380. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WL, Jin G, Li CF, Jeong YS, Moten A, Xu D, Feng Z, Chen W, Cai Z, Darnay B, et al: Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated activation of Akt signaling. Sci Signal. 6:ra32013. View Article : Google Scholar : PubMed/NCBI | |
|
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM and Gray NS: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 284:8023–8032. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM and Alessi DR: Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 421:29–42. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Monaco AP: The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation. 87:157–163. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Menon KV, Hakeem AR and Heaton ND: Meta-analysis: Recurrence and survival following the use of sirolimus in liver transplantation for hepatocellular carcinoma. Aliment Pharmacol Ther. 37:411–419. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ashworth RE and Wu J: Mammalian target of rapamycin inhibition in hepatocellular carcinoma. World J Hepatol. 6:776–782. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, Muzikansky A, Clark JW, Kwak EL, Schrag D, et al: Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 117:5094–5102. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Shiah HS, Chen CY, Lin YJ, Lin PW, Su WC and Chang JY: Randomized, phase I, and pharmacokinetic (PK) study of RAD001, and mTOR inhibitor, in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 27(4587)2009. | |
|
Zhao B, Ma Y, Xu Z, Wang J, Wang F, Wang D, Pan S, Wu Y, Pan H, Xu D, et al: Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett. 347:79–87. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Omar HA: Arafa el SA, Maghrabi IA and Weng JR: Sensitization of hepatocellular carcinoma cells to Apo2L/TRAIL by a novel Akt/NF-kappaB signalling inhibitor. Basic Clin Pharmacol Toxicol. 114:464–471. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SJ, Hwang JW, Yim H, Yim HJ, Woo SU, Suh SJ, Hyun JJ, Jung SW, Koo JS, Kim JH, et al: Synergistic effect of simvastatin plus NS398 on inhibition of proliferation and survival in hepatocellular carcinoma cell line. J Gastroenterol Hepatol. 29:1299–1307. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng YH, Yin LH, Grahn TH, Ye AF, Zhao YR and Zhang QY: Anticancer effects of baicalein on hepatocellular carcinoma cells. Phytother Res. 28:1342–1348. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chow AK, Ng L, Sing Li H, Cheng CW, Lam CS, Yau TC, Cheng PN, Fan ST, Poon RT and Pang RW: Anti-tumor efficacy of a recombinant human arginase in human hepatocellular carcinoma. Curr Cancer Drug Targets. 12:1233–1243. 2012.PubMed/NCBI | |
|
Yang F, Deng R, Qian XJ, Chang SH, Wu XQ, Qin J, Feng GK, Ding K and Zhu XF: Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Cell Death Dis. 5:e11142014. View Article : Google Scholar : PubMed/NCBI | |
|
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Zhang Z, Hill DL, Wang H and Zhang R: Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. 67:1988–1996. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Li Q, Zhang YH, Tian ZY, Ma HX, Zhao J, Xie SQ and Wang CJ: Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro. Anticancer Drugs. 24:32–42. 2013. View Article : Google Scholar | |
|
Xie SQ, Zhang YH, Li Q, Xu FH, Miao JW, Zhao J and Wang CJ: 3-Nitro-naphthalimide and nitrogen mustard conjugate NNM-25 induces hepatocellular carcinoma apoptosis via PARP-1/p53 pathway. Apoptosis. 17:725–734. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka T and Rabbitts TH: Interfering with protein-protein interactions: Potential for cancer therapy. Cell Cycle. 7:1569–1574. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA and Israël A: A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol Cell. 5:207–216. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ayaz F and Osborne BA: Non-canonical notch signaling in cancer and immunity. Front Oncol. 4(345)2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S and Griffin JD: MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 26:484–489. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Solé M, Thung S, Stanger BZ, et al: Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 143:1660–1669.e7. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, et al: IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell. 45:171–184. 2012. View Article : Google Scholar : | |
|
Nüsslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, et al: Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 273:14037–14045. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Porter JA, Young KE and Beachy PA: Cholesterol modification of hedgehog signaling proteins in animal development. Science. 274:255–259. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Marigo V, Davey RA, Zuo Y, Cunningham JM and Tabin CJ: Biochemical evidence that patched is the Hedgehog receptor. Nature. 384:176–179. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, et al: The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 384:129–134. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Taipale J, Cooper MK, Maiti T and Beachy PA: Patched acts catalytically to suppress the activity of Smoothened. Nature. 418:892–897. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW, Owzar K, Chen W, Torbenson MS, et al: Dysregulation of the Hedgehog pathway in human hepato-carcinogenesis. Carcinogenesis. 27:748–757. 2006. View Article : Google Scholar | |
|
Patil MA, Zhang J, Ho C, Cheung ST, Fan ST and Chen X: Hedgehog signaling in human hepatocellular carcinoma. Cancer Biol Ther. 5:111–117. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Zeng W, Gai X, Xu Q, Li C, Liang Z, Tuo H and Liu Q: Role of the Hedgehog pathway in hepatocellular carcinoma (Review). Oncol Rep. 30:2020–2026. 2013.PubMed/NCBI | |
|
Koyabu Y, Nakata K, Mizugishi K, Aruga J and Mikoshiba K: Physical and functional interactions between Zic and Gli proteins. J Biol Chem. 276:6889–6892. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YY, Jiang JX, Ma H, Han J, Sun ZY, Liu ZM and Xu ZG: Role of ZIC1 methylation in hepatocellular carcinoma and its clinical significance. Tumour Biol. 35:7429–7433. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Badouel C, Garg A and McNeill H: Herding Hippos: Regulating growth in flies and man. Curr Opin Cell Biol. 21:837–843. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, et al: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 16:425–438. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Aragón E, Goerner N, Xi Q, Gomes T, Gao S, Massagué J and Macias MJ: Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β pathways. Structure. 20:1726–1736. 2012. View Article : Google Scholar | |
|
Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G and Blandino G: Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 276:15164–15173. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Komuro A, Nagai M, Navin NE and Sudol M: WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 278:33334–33341. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi R, Chen LF, Shigesada K, Murakami Y and Ito Y: A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18:2551–2562. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Huang J and Chen J: Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 286:4364–4370. 2011. View Article : Google Scholar : | |
|
Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C and Hong W: Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 286:7018–7026. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q and Guan KL: Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, et al: Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J. 432:461–472. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Oka T, Mazack V and Sudol M: Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem. 283:27534–27546. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB, Ranganathan S and Apte U: Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 32:38–47. 2012. View Article : Google Scholar | |
|
Vassilev A, Kaneko KJ, Shu H, Zhao Y and DePamphilis ML: TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15:1229–1241. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Kim J, Ye X, Lai ZC and Guan KL: Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res. 69:1089–1098. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pobbati AV and Hong W: Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 14:390–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rao VS, Srinivas K, Sujini GN and Kumar GN: Protein-protein interaction detection: Methods and analysis. Int J Proteomics. 2014(147648)2014. View Article : Google Scholar : PubMed/NCBI | |
|
London AS, Patel K, Quinn L and Lemmerer M: Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins. Protein Expr Purif. 180:80–84. 2014. | |
|
Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, et al: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294:2364–2368. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Song Z, Dong C, Wang L, Chen DE, Bi G, Dai M and Liu J: A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A. Virol J. 7(126)2010. | |
|
Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M and Séraphin B: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 17:1030–1032. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
MacBeath G and Schreiber SL: Printing proteins as microarrays for high-throughput function determination. Science. 289:1760–1763. 2000.PubMed/NCBI | |
|
Westwick JK and Michnick SW: Protein-fragment complementation assays (PCA) in small GTPase research and drug discovery. Methods Enzymol. 407:388–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Palmer AG III: Enzyme dynamics from NMR spectroscopy. Acc Chem Res. 48:457–465. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vidal M and Fields S: The yeast two-hybrid assay: Still finding connections after 25 years. Nat Methods. 11:1203–1206. 2014. View Article : Google Scholar | |
|
Güell O, Sagués F and Serrano MA: Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLOS Comput Biol. 10:e10036372014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Jin Q, Wang S and Ren R: Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches. Comput Biol Med. 41:272–277. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vyas VK, Goel A, Ghate M and Patel P: Ligand and structure-based approaches for the identification of SIRT1 activators. Chem Biol Interact. 228:9–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Enright AJ, Iliopoulos I, Kyrpides NC and Ouzounis CA: Protein interaction maps for complete genomes based on gene fusion events. Nature. 402:86–90. 1999.PubMed/NCBI | |
|
Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM and Anderson RM: Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res. 756:66–77. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pazos F and Valencia A: In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins. 47:219–227. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Whidden C and Matsen FA IV: Quantifying MCMC exploration of phylogenetic tree space. Syst Biol. 64:472–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Altman J, Hédl R, Szabó P, Mazůrek P, Riedl V, Müllerová J, Kopecký M and Doležal J: Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in Central Europe. PLoS One. 8:e557702013. View Article : Google Scholar : PubMed/NCBI | |
|
Gene Ontology, C; Gene and Ontology Consortium: Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43(D1): D1049–D1056. 2015. View Article : Google Scholar | |
|
Xenarios I, Salwínski L, Duan XJ, Higney P, Kim SM and Eisenberg D: DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30:303–305. 2002. View Article : Google Scholar : | |
|
Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, et al: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(D1): D470–D478. 2015. View Article : Google Scholar | |
|
Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S and Wu J: PINA v2.0: Mining interactome modules. Nucleic Acids Res. 40(D1): D862–D865. 2012. View Article : Google Scholar : | |
|
Patil A, Nakai K and Nakamura H: HitPredict: A database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res. 39(Database): D744–D749. 2011. View Article : Google Scholar | |
|
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al: IntAct: An open source molecular interaction database. Nucleic Acids Res. 32:D452–D455. 2004. View Article : Google Scholar : | |
|
Prieto C and De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res. 34(Web Server): W298–W302. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al: MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40(D1): D857–D861. 2012. View Article : Google Scholar : | |
|
Song JJ and Lee YJ: Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: A negative feedback loop. J Cell Biol. 170:61–72. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kang D, Sun BK, Kim JH and Song JJ: TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell Signal. 25:372–379. 2013. View Article : Google Scholar | |
|
Deregibus MC, Cantaluppi V, Doublier S, Brizzi MF, Deambrosis I, Albini A and Camussi G: HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. J Biol Chem. 277:25195–25202. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Polzien L, Baljuls A, Rennefahrt UE, Fischer A, Schmitz W, Zahedi RP, Sickmann A, Metz R, Albert S, Benz R, et al: Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: Pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem. 284:28004–28020. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang T, Ohashi A, Huang Y, Pandita TK, Ludwig T, Powell SN and Yang Q: Negative regulation of AKT activation by BRCA1. Cancer Res. 68:10040–10044. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang T, Jia Y, Sherris D, Li S, Wang H, Lu D and Yang Q: Targeting the Akt/mTOR pathway in Brca1-deficient cancers. Oncogene. 30:2443–2450. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Du K and Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 273:32377–32379. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K and Fukamizu A: Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA. 102:11278–11283. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Brent MM, Anand R and Marmorstein R: Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure. 16:1407–1416. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Biggs WH III, Meisenhelder J, Hunter T, Cavenee WK and Arden KC: Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA. 96:7421–7426. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Zhao R, Yang HY and Lee MH: Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene. 24:1924–1935. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuzaki H, Ichino A, Hayashi T, Yamamoto T and Kikkawa U: Regulation of intracellular localization and transcriptional activity of FOXO4 by protein kinase B through phosphorylation at the motif sites conserved among the FOXO family. J Biochem. 138:485–491. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, et al: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene. 30:457–470. 2011. View Article : Google Scholar | |
|
Drendall CI, Pham QH and Dietze EC: Purification and characterization of recombinant CH3 domain fragment of the CREB-binding protein. Protein Expr Purif. 70:196–205. 2010. View Article : Google Scholar : | |
|
Connor MK, Azmi PB, Subramaniam V, Li H and Seth A: Molecular characterization of ring finger protein 11. Mol Cancer Res. 3:453–461. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, et al: The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 325:1134–1138. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hartman AD, Wilson-Weekes A, Suvannasankha A, Burgess GS, Phillips CA, Hincher KJ, Cripe LD and Boswell HS: Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and proliferation. Exp Hematol. 34:1360–1376. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kim CK, Lee SB, Nguyen TL, Lee KH, Um SH, Kim J and Ahn JY: Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization. Exp Cell Res. 318:136–143. 2012. View Article : Google Scholar | |
|
Deep G, Oberlies NH, Kroll DJ and Agarwal R: Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway. Oncogene. 27:3986–3998. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Milne D, Kampanis P, Nicol S, Dias S, Campbell DG, Fuller-Pace F and Meek D: A novel site of AKT-mediated phosphorylation in the human MDM2 oncoprotein. FEBS Lett. 577:270–276. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, et al: The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27:1932–1943. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B and Jacinto E: mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29:3939–3951. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE and Mayo MW: Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem. 287:581–588. 2012. View Article : Google Scholar : | |
|
Fan CD, Lum MA, Xu C, Black JD and Wang X: Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem. 288:1674–1684. 2013. View Article : Google Scholar : | |
|
Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, Fladd C, Parkinson J and Rotin D: Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol. 5(333)2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mistafa O, Ghalali A, Kadekar S, Högberg J and Stenius U: Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem. 285:27900–27910. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Woods NT, Mesquita RD, Sweet M, Carvalho MA, Li X, Liu Y, Nguyen H, Thomas CE, Iversen ES Jr, Marsillac S, et al: Charting the landscape of tandem BRCT domain-mediated protein interactions. Sci Signal. 5:rs62012. View Article : Google Scholar : PubMed/NCBI | |
|
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL and Sabatini DM: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 22:159–168. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ikenoue T, Inoki K, Yang Q, Zhou X and Guan KL: Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27:1919–1931. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, Wu J, Lin HK and Sarbassov D: ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci Signal. 4:ra102011. View Article : Google Scholar | |
|
Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M and Gupta MP: The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 4:ra462011. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Inuzuka H, Tseng A, Chin RY, Toker A and Wei W: Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 11:397–408. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T and Kolch W: Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res. 70:1195–1203. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kim D, Shu S, Coppola MD, Kaneko S, Yuan ZQ and Cheng JQ: Regulation of proapoptotic mammalian ste20-like kinase MST2 by the IGF1-Akt pathway. PLoS One. 5:e96162010. View Article : Google Scholar : PubMed/NCBI |