Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2016 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2016 Volume 35 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review)

  • Authors:
    • Xiao Zhang
    • Yulan Wang
    • Jiayi Wang
    • Fenyong Sun
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
  • Pages: 625-638
    |
    Published online on: November 27, 2015
       https://doi.org/10.3892/or.2015.4464
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Numerous signaling pathways have been shown to be dysregulated in liver cancer. In addition, some protein-protein interactions are prerequisite for the uncontrolled activation or inhibition of these signaling pathways. For instance, in the PI3K/AKT signaling pathway, protein AKT binds with a number of proteins such as mTOR, FOXO1 and MDM2 to play an oncogenic role in liver cancer. The aim of the present review was to focus on a series of important protein-protein interactions that can serve as potential therapeutic targets in liver cancer among certain important pro-carcinogenic signaling pathways. The strategies of how to investigate and analyze the protein-protein interactions are also included in this review. A survey of these protein interactions may provide alternative therapeutic targets in liver cancer.
View Figures

Figure 1

Figure 2

View References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Arzumanyan A, Reis HM and Feitelson MA: Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 13:123–135. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Squires RH, Ng V, Romero R, Ekong U, Hardikar W, Emre S and Mazariegos GV: Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 59:112–131. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Lo CM: Liver transplantation in 2012: Transplantation for liver cancer - more with better results. Nat Rev Gastroenterol Hepatol. 10:74–76. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Lie PP, Cheng CY and Mruk DD: Signalling pathways regulating the blood-testis barrier. Int J Biochem Cell Biol. 45:621–625. 2013. View Article : Google Scholar :

6 

Kandori H, Sudo Y and Furutani Y: Protein-protein interaction changes in an archaeal light-signal transduction. J Biomed Biotechnol. 2010(424760)2010. View Article : Google Scholar : PubMed/NCBI

7 

Chakraborty C, Doss CGP, Chen L and Zhu H: Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using 'in silico pharmacology'. Curr Protein Pept Sci. 15:561–571. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Pal I and Mandal M: PI3K and Akt as molecular targets for cancer therapy: Current clinical outcomes. Acta Pharmacol Sin. 33:1441–1458. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E and Lothe RA: Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 1855:104–121. 2015.

10 

Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA and McCubrey JA: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia. 17:590–603. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, et al: Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol. 32:2951–2958. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y and Farajnia S: Natural inhibitors of PI3K/AKT signaling in breast cancer: Emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res. 93:1–10. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Matsuoka T and Yashiro M: The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers (Basel). 6:1441–1463. 2014. View Article : Google Scholar

14 

Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J and Su B: SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 127:125–137. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Manning BD and Cantley LC: AKT/PKB signaling: Navigating downstream. Cell. 129:1261–1274. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM and Donner DB: NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 401:82–85. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Lu Y and Wahl LM: Production of matrix metalloproteinase-9 by activated human monocytes involves a phosphatidylinositol-3 kinase/Akt/IKKalpha/NF-kappaB pathway. J Leukoc Biol. 78:259–265. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Vandermoere F, El Yazidi-Belkoura I, Adriaenssens E, Lemoine J and Hondermarck H: The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene. 24:5482–5491. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Tu CC, Cheng LH, Hsu HH, Chen LM, Lin YM, Chen MC, Lee NH, Tsai FJ, Huang CY and Wu WJ: Activation of snail and EMT-like signaling via the IKKαβ/NF-κB pathway in Apicidin-resistant HA22T hepatocellular carcinoma cells. Chin J Physiol. 56:326–333. 2013. View Article : Google Scholar

21 

Noh JH, Bae HJ, Eun JW, Shen Q, Park SJ, Kim HS, Nam B, Shin WC, Lee EK, Lee K, et al: HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res. 74:1728–1738. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhang R, Cao X, Wang C, Hou L, Nie J, Zhou M and Feng Y: An antitumor peptide from Musca domestica pupae (MATP) induces apoptosis in HepG2 cells through a JNK-mediated and Akt-mediated NF-κB pathway. Anticancer Drugs. 23:827–835. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L, Kaneko S, Coppola D and Cheng JQ: Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem. 285:3815–3824. 2010. View Article : Google Scholar

24 

Wang CY, Tsai AC, Peng CY, Chang YL, Lee KH, Teng CM and Pan SL: Dehydrocostuslactone suppresses angiogenesis in vitro and in vivo through inhibition of Akt/GSK-3β and mTOR signaling pathways. PLoS One. 7:e311952012. View Article : Google Scholar

25 

Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, Schreiber EM, Day BW and Liu B: APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase. Mol Cell. 32:652–661. 2008. View Article : Google Scholar

26 

Bauer L, Langer R, Becker K, Hapfelmeier A, Ott K, Novotny A, Höfler H and Keller G: Expression profiling of stem cell-related genes in neoadjuvant-treated gastric cancer: A NOTCH2, GSK3B and β-catenin gene signature predicts survival. PLoS One. 7:e445662012. View Article : Google Scholar

27 

Hsieh CH, Cheng LH, Hsu HH, Ho TJ, Tu CC, Lin YM, Chen MC, Tsai FJ, Hsieh YL and Huang CY: Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the Wnt/β-catenin signaling pathway and MMP-2 expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic effect. Biosci Biotechnol Biochem. 77:2397–2404. 2013. View Article : Google Scholar

28 

Mavila N, James D, Utley S, Cu N, Coblens O, Mak K, Rountree CB, Kahn M and Wang KS: Fibroblast growth factor receptor-mediated activation of AKT-β-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS One. 7:e504012012. View Article : Google Scholar

29 

Liu L, Dai Y, Chen J, Zeng T, Li Y, Chen L, Zhu YH, Li J, Li Y, Ma S, et al: Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3β/Snail signaling. Hepatology. 59:531–543. 2014. View Article : Google Scholar

30 

Gotoh J, Obata M, Yoshie M, Kasai S and Ogawa K: Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis. 24:435–442. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS and Kim CW: Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 31:2187–2198. 2012. View Article : Google Scholar

32 

Niault TS and Baccarini M: Targets of Raf in tumorigenesis. Carcinogenesis. 31:1165–1174. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, et al: Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 44:133–139. 2012. View Article : Google Scholar

34 

Barthwal MK, Sathyanarayana P, Kundu CN, Rana B, Pradeep A, Sharma C, Woodgett JR and Rana A: Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J Biol Chem. 278:3897–3902. 2003. View Article : Google Scholar

35 

Kim AH, Khursigara G, Sun X, Franke TF and Chao MV: Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol. 21:893–901. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Zimmermann S and Moelling K: Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 286:1741–1744. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Kane LP, Mollenauer MN, Xu Z, Turck CW and Weiss A: Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol Cell Biol. 22:5962–5974. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Park HS, Kim MS, Huh SH, Park J, Chung J, Kang SS and Choi EJ: Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J Biol Chem. 277:2573–2578. 2002. View Article : Google Scholar

39 

Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P and McLeish KR: p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem. 276:3517–3523. 2001. View Article : Google Scholar

40 

Nishitani Y and Matsumoto H: Ethanol rapidly causes activation of JNK associated with ER stress under inhibition of ADH. FEBS Lett. 580:9–14. 2006. View Article : Google Scholar

41 

Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG and Choi EJ: Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J Biol Chem. 278:13995–14001. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Zhou BP, Liao Y, Xia W, Zou Y, Spohn B and Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 3:973–982. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ and Vousden KH: Phosphorylation of HDM2 by Akt. Oncogene. 21:1955–1962. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Fu Z, Ren L, Wei H, Lv J, Che X, Zhu Z, Jia J, Wang L, Lin G, Lu R, et al: Effects of Tyroserleutide on phosphatidylinositol 3′-kinase/AKT pathway in human hepatocellular carcinoma cell. J Drug Target. 22:146–155. 2014. View Article : Google Scholar

45 

Wang C, Qi R, Li N, Wang Z, An H, Zhang Q, Yu Y and Cao X: Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepato-cellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 284:16183–16190. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Song J, Park S, Kim M and Shin I: Down-regulation of Notch-dependent transcription by Akt in vitro. FEBS Lett. 582:1693–1699. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Xu L, Zhu Y, Xu J, Wu K, Li J, Xu W, Liu H, Wang S, Yin H, Chen L, et al: Notch1 activation promotes renal cell carcinoma growth via PI3K/Akt signaling. Cancer Sci. 103:1253–1258. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Huntzicker EG, Hötzel K, Choy L, Che L, Ross J, Pau G, Sharma N, Siebel CW, Chen X and French DM: Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology. 61:942–952. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Brana I, Berger R, Golan T, Haluska P, Edenfield J, Fiorica J, Stephenson J, Martin LP, Westin S, Hanjani P, et al: A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br J Cancer. 111:1932–1944. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Fielhaber JA, Han YS, Tan J, Xing S, Biggs CM, Joung KB and Kristof AS: Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion. J Biol Chem. 284:24341–24353. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Yang F, Zhang W, Li D and Zhan Q: Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem. 288:6552–6560. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504–3513. 2000.

53 

Dunlop EA and Tee AR: Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21:827–835. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Mamane Y, Petroulakis E, LeBacquer O and Sonenberg N: mTOR, translation initiation and cancer. Oncogene. 25:6416–6422. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Zhou Q, Lui VW and Yeo W: Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 7:1149–1167. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Zhou L, Huang Y, Li J and Wang Z: The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 27:255–261. 2010. View Article : Google Scholar

57 

Nissen NN1, Menon V, Bresee C, Tran TT, Annamalai A, Poordad F, Fair JH, Klein AS, Boland B and Colquhoun SD: Recurrent hepatocellular carcinoma after liver transplant: identifying the high-risk patient. HPB. 13:626–632. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Nakae J, Kitamura T, Kitamura Y, Biggs WH III, Arden KC and Accili D: The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 4:119–129. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Hay N: Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 1813:1965–1970. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Nakae J, Kitamura T, Silver DL and Accili D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 108:1359–1367. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Khor TO, Gul YA, Ithnin H and Seow HF: Positive correlation between overexpression of phospho-BAD with phosphorylated Akt at serine 473 but not threonine 308 in colorectal carcinoma. Cancer Lett. 210:139–150. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Huang CS, Lee YR, Chen CS, Tu SH, Wang YJ, Lee CH, Chen LC, Chang HW, Chang CH, Chih-Ming S, et al: Long-term ethanol exposure causes human liver cancer cells to become resistant to mitomycin C treatment through the inactivation of bad-mediated apoptosis. Mol Carcinog. 49:728–738. 2010.PubMed/NCBI

63 

Carrano AC and Pagano M: Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol. 153:1381–1390. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, et al: Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 11:420–432. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, Armbruster J, Fan L, Lee SA, Jiang L, et al: AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatology. 55:833–845. 2012. View Article : Google Scholar :

66 

Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, et al: International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 58:782–797. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Lin HK, Yeh S, Kang HY and Chang C: Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA. 98:7200–7205. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Ma WL, Jeng LB, Lai HC, Liao PY and Chang C: Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Lett. 351:64–71. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Nie H, Cao Q, Zhu L, Gong Y, Gu J and He Z: Acetylcholine acts on androgen receptor to promote the migration and invasion but inhibit the apoptosis of human hepatocarcinoma. PLoS One. 8:e616782013. View Article : Google Scholar : PubMed/NCBI

70 

Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 63:1635–1647. 2014. View Article : Google Scholar

71 

Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT and Fan ST: Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Vasan N, Yelensky R, Wang K, Moulder S, Dzimitrowicz H, Avritscher R, Wang B, Wu Y, Cronin MT, Palmer G, et al: A targeted next-generation sequencing assay detects a high frequency of therapeutically targetable alterations in primary and metastatic breast cancers: Implications for clinical practice. Oncologist. 19:453–458. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Kittaka N, Takemasa I, Takeda Y, Marubashi S, Nagano H, Umeshita K, Dono K, Matsubara K, Matsuura N and Monden M: Molecular mapping of human hepatocellular carcinoma provides deeper biological insight from genomic data. Eur J Cancer. 44:885–897. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Chan J, Ko FC, Yeung YS, Ng IO and Yam JW: Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma. PLoS One. 6:e169842011. View Article : Google Scholar : PubMed/NCBI

75 

Peroukides S, Bravou V, Varakis J, Alexopoulos A, Kalofonos H and Papadaki H: ILK overexpression in human hepatocellular carcinoma and liver cirrhosis correlates with activation of Akt. Oncol Rep. 20:1337–1344. 2008.PubMed/NCBI

76 

Cui Y, Wu W, Zhou Y, Xie Q, Liu T, Jin J and Liu K: HSP27 expression levels are associated with the sensitivity of hepatocellular carcinoma cells to 17-allylamino-17-demethoxygeldanamycin. Future Oncol. 9:411–418. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Nam SY, Seo HH, Park HS, An S, Kim JY, Yang KH, Kim CS, Jeong M and Jin YW: Phosphorylation of CLK2 at serine 34 and threonine 127 by AKT controls cell survival after ionizing radiation. J Biol Chem. 285:31157–31163. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Villagrasa P, Díaz VM, Viñas-Castells R, Peiró S, Del Valle-Pérez B, Dave N, Rodríguez-Asiain A, Casal JI, Lizcano JM, Duñach M, et al: Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene. 31:4022–4033. 2012. View Article : Google Scholar

79 

Thirumurthi U, Shen J, Xia W, LaBaff AM, Wei Y, Li CW, Chang WC, Chen CH, Lin HK, Yu D, et al: MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Sci Signal. 7:ra712014. View Article : Google Scholar : PubMed/NCBI

80 

Zhao R, Yang HY, Shin J, Phan L, Fang L, Che TF, Su CH, Yeung SC and Lee MH: CDK inhibitor p57Kip2 is downregulated by Akt during HER2-mediated tumorigenicity. Cell Cycle. 12:935–943. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Zeng L, Bai M, Mittal AK, El-Jouni W, Zhou J, Cohen DM, Zhou MI and Cohen HT: Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma. Cancer Res. 73:5371–5380. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Yang WL, Jin G, Li CF, Jeong YS, Moten A, Xu D, Feng Z, Chen W, Cai Z, Darnay B, et al: Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated activation of Akt signaling. Sci Signal. 6:ra32013. View Article : Google Scholar : PubMed/NCBI

83 

Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM and Gray NS: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 284:8023–8032. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69:6232–6240. 2009. View Article : Google Scholar : PubMed/NCBI

85 

García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM and Alessi DR: Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 421:29–42. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Monaco AP: The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation. 87:157–163. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Menon KV, Hakeem AR and Heaton ND: Meta-analysis: Recurrence and survival following the use of sirolimus in liver transplantation for hepatocellular carcinoma. Aliment Pharmacol Ther. 37:411–419. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Ashworth RE and Wu J: Mammalian target of rapamycin inhibition in hepatocellular carcinoma. World J Hepatol. 6:776–782. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, Muzikansky A, Clark JW, Kwak EL, Schrag D, et al: Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 117:5094–5102. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Chen L, Shiah HS, Chen CY, Lin YJ, Lin PW, Su WC and Chang JY: Randomized, phase I, and pharmacokinetic (PK) study of RAD001, and mTOR inhibitor, in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 27(4587)2009.

91 

Zhao B, Ma Y, Xu Z, Wang J, Wang F, Wang D, Pan S, Wu Y, Pan H, Xu D, et al: Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett. 347:79–87. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Omar HA: Arafa el SA, Maghrabi IA and Weng JR: Sensitization of hepatocellular carcinoma cells to Apo2L/TRAIL by a novel Akt/NF-kappaB signalling inhibitor. Basic Clin Pharmacol Toxicol. 114:464–471. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Lee SJ, Hwang JW, Yim H, Yim HJ, Woo SU, Suh SJ, Hyun JJ, Jung SW, Koo JS, Kim JH, et al: Synergistic effect of simvastatin plus NS398 on inhibition of proliferation and survival in hepatocellular carcinoma cell line. J Gastroenterol Hepatol. 29:1299–1307. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Zheng YH, Yin LH, Grahn TH, Ye AF, Zhao YR and Zhang QY: Anticancer effects of baicalein on hepatocellular carcinoma cells. Phytother Res. 28:1342–1348. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Chow AK, Ng L, Sing Li H, Cheng CW, Lam CS, Yau TC, Cheng PN, Fan ST, Poon RT and Pang RW: Anti-tumor efficacy of a recombinant human arginase in human hepatocellular carcinoma. Curr Cancer Drug Targets. 12:1233–1243. 2012.PubMed/NCBI

96 

Yang F, Deng R, Qian XJ, Chang SH, Wu XQ, Qin J, Feng GK, Ding K and Zhu XF: Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Cell Death Dis. 5:e11142014. View Article : Google Scholar : PubMed/NCBI

97 

Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Li M, Zhang Z, Hill DL, Wang H and Zhang R: Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. 67:1988–1996. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Li M, Li Q, Zhang YH, Tian ZY, Ma HX, Zhao J, Xie SQ and Wang CJ: Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro. Anticancer Drugs. 24:32–42. 2013. View Article : Google Scholar

100 

Xie SQ, Zhang YH, Li Q, Xu FH, Miao JW, Zhao J and Wang CJ: 3-Nitro-naphthalimide and nitrogen mustard conjugate NNM-25 induces hepatocellular carcinoma apoptosis via PARP-1/p53 pathway. Apoptosis. 17:725–734. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Tanaka T and Rabbitts TH: Interfering with protein-protein interactions: Potential for cancer therapy. Cell Cycle. 7:1569–1574. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Artavanis-Tsakonas S, Rand MD and Lake RJ: Notch signaling: Cell fate control and signal integration in development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA and Israël A: A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol Cell. 5:207–216. 2000. View Article : Google Scholar : PubMed/NCBI

104 

Ayaz F and Osborne BA: Non-canonical notch signaling in cancer and immunity. Front Oncol. 4(345)2014. View Article : Google Scholar : PubMed/NCBI

105 

Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S and Griffin JD: MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 26:484–489. 2000. View Article : Google Scholar : PubMed/NCBI

106 

Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Solé M, Thung S, Stanger BZ, et al: Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 143:1660–1669.e7. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, et al: IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell. 45:171–184. 2012. View Article : Google Scholar :

108 

Nüsslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. 1980. View Article : Google Scholar : PubMed/NCBI

109 

Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, et al: Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 273:14037–14045. 1998. View Article : Google Scholar : PubMed/NCBI

110 

Porter JA, Young KE and Beachy PA: Cholesterol modification of hedgehog signaling proteins in animal development. Science. 274:255–259. 1996. View Article : Google Scholar : PubMed/NCBI

111 

Marigo V, Davey RA, Zuo Y, Cunningham JM and Tabin CJ: Biochemical evidence that patched is the Hedgehog receptor. Nature. 384:176–179. 1996. View Article : Google Scholar : PubMed/NCBI

112 

Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, et al: The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature. 384:129–134. 1996. View Article : Google Scholar : PubMed/NCBI

113 

Taipale J, Cooper MK, Maiti T and Beachy PA: Patched acts catalytically to suppress the activity of Smoothened. Nature. 418:892–897. 2002. View Article : Google Scholar : PubMed/NCBI

114 

Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW, Owzar K, Chen W, Torbenson MS, et al: Dysregulation of the Hedgehog pathway in human hepato-carcinogenesis. Carcinogenesis. 27:748–757. 2006. View Article : Google Scholar

115 

Patil MA, Zhang J, Ho C, Cheung ST, Fan ST and Chen X: Hedgehog signaling in human hepatocellular carcinoma. Cancer Biol Ther. 5:111–117. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Zheng X, Zeng W, Gai X, Xu Q, Li C, Liang Z, Tuo H and Liu Q: Role of the Hedgehog pathway in hepatocellular carcinoma (Review). Oncol Rep. 30:2020–2026. 2013.PubMed/NCBI

117 

Koyabu Y, Nakata K, Mizugishi K, Aruga J and Mikoshiba K: Physical and functional interactions between Zic and Gli proteins. J Biol Chem. 276:6889–6892. 2001. View Article : Google Scholar : PubMed/NCBI

118 

Wang YY, Jiang JX, Ma H, Han J, Sun ZY, Liu ZM and Xu ZG: Role of ZIC1 methylation in hepatocellular carcinoma and its clinical significance. Tumour Biol. 35:7429–7433. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Badouel C, Garg A and McNeill H: Herding Hippos: Regulating growth in flies and man. Curr Opin Cell Biol. 21:837–843. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, et al: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 16:425–438. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Aragón E, Goerner N, Xi Q, Gomes T, Gao S, Massagué J and Macias MJ: Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β pathways. Structure. 20:1726–1736. 2012. View Article : Google Scholar

123 

Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G and Blandino G: Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 276:15164–15173. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Komuro A, Nagai M, Navin NE and Sudol M: WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 278:33334–33341. 2003. View Article : Google Scholar : PubMed/NCBI

125 

Yagi R, Chen LF, Shigesada K, Murakami Y and Ito Y: A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18:2551–2562. 1999. View Article : Google Scholar : PubMed/NCBI

126 

Wang W, Huang J and Chen J: Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 286:4364–4370. 2011. View Article : Google Scholar :

127 

Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C and Hong W: Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 286:7018–7026. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q and Guan KL: Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, et al: Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J. 432:461–472. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Oka T, Mazack V and Sudol M: Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem. 283:27534–27546. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB, Ranganathan S and Apte U: Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 32:38–47. 2012. View Article : Google Scholar

133 

Vassilev A, Kaneko KJ, Shu H, Zhao Y and DePamphilis ML: TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15:1229–1241. 2001. View Article : Google Scholar : PubMed/NCBI

134 

Zhao B, Kim J, Ye X, Lai ZC and Guan KL: Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res. 69:1089–1098. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Pobbati AV and Hong W: Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 14:390–398. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Rao VS, Srinivas K, Sujini GN and Kumar GN: Protein-protein interaction detection: Methods and analysis. Int J Proteomics. 2014(147648)2014. View Article : Google Scholar : PubMed/NCBI

137 

London AS, Patel K, Quinn L and Lemmerer M: Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins. Protein Expr Purif. 180:80–84. 2014.

138 

Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, et al: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294:2364–2368. 2001. View Article : Google Scholar : PubMed/NCBI

139 

Song Z, Dong C, Wang L, Chen DE, Bi G, Dai M and Liu J: A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A. Virol J. 7(126)2010.

140 

Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M and Séraphin B: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 17:1030–1032. 1999. View Article : Google Scholar : PubMed/NCBI

141 

MacBeath G and Schreiber SL: Printing proteins as microarrays for high-throughput function determination. Science. 289:1760–1763. 2000.PubMed/NCBI

142 

Westwick JK and Michnick SW: Protein-fragment complementation assays (PCA) in small GTPase research and drug discovery. Methods Enzymol. 407:388–401. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Palmer AG III: Enzyme dynamics from NMR spectroscopy. Acc Chem Res. 48:457–465. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Vidal M and Fields S: The yeast two-hybrid assay: Still finding connections after 25 years. Nat Methods. 11:1203–1206. 2014. View Article : Google Scholar

145 

Güell O, Sagués F and Serrano MA: Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLOS Comput Biol. 10:e10036372014. View Article : Google Scholar : PubMed/NCBI

146 

Zhang Y, Jin Q, Wang S and Ren R: Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches. Comput Biol Med. 41:272–277. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Vyas VK, Goel A, Ghate M and Patel P: Ligand and structure-based approaches for the identification of SIRT1 activators. Chem Biol Interact. 228:9–17. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Enright AJ, Iliopoulos I, Kyrpides NC and Ouzounis CA: Protein interaction maps for complete genomes based on gene fusion events. Nature. 402:86–90. 1999.PubMed/NCBI

149 

Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM and Anderson RM: Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res. 756:66–77. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Pazos F and Valencia A: In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins. 47:219–227. 2002. View Article : Google Scholar : PubMed/NCBI

151 

Whidden C and Matsen FA IV: Quantifying MCMC exploration of phylogenetic tree space. Syst Biol. 64:472–491. 2015. View Article : Google Scholar : PubMed/NCBI

152 

Altman J, Hédl R, Szabó P, Mazůrek P, Riedl V, Müllerová J, Kopecký M and Doležal J: Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in Central Europe. PLoS One. 8:e557702013. View Article : Google Scholar : PubMed/NCBI

153 

Gene Ontology, C; Gene and Ontology Consortium: Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43(D1): D1049–D1056. 2015. View Article : Google Scholar

154 

Xenarios I, Salwínski L, Duan XJ, Higney P, Kim SM and Eisenberg D: DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30:303–305. 2002. View Article : Google Scholar :

155 

Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, et al: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(D1): D470–D478. 2015. View Article : Google Scholar

156 

Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S and Wu J: PINA v2.0: Mining interactome modules. Nucleic Acids Res. 40(D1): D862–D865. 2012. View Article : Google Scholar :

157 

Patil A, Nakai K and Nakamura H: HitPredict: A database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res. 39(Database): D744–D749. 2011. View Article : Google Scholar

158 

Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al: IntAct: An open source molecular interaction database. Nucleic Acids Res. 32:D452–D455. 2004. View Article : Google Scholar :

159 

Prieto C and De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res. 34(Web Server): W298–W302. 2006. View Article : Google Scholar : PubMed/NCBI

160 

Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al: MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40(D1): D857–D861. 2012. View Article : Google Scholar :

161 

Song JJ and Lee YJ: Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: A negative feedback loop. J Cell Biol. 170:61–72. 2005. View Article : Google Scholar : PubMed/NCBI

162 

Kim J, Kang D, Sun BK, Kim JH and Song JJ: TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell Signal. 25:372–379. 2013. View Article : Google Scholar

163 

Deregibus MC, Cantaluppi V, Doublier S, Brizzi MF, Deambrosis I, Albini A and Camussi G: HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. J Biol Chem. 277:25195–25202. 2002. View Article : Google Scholar : PubMed/NCBI

164 

Polzien L, Baljuls A, Rennefahrt UE, Fischer A, Schmitz W, Zahedi RP, Sickmann A, Metz R, Albert S, Benz R, et al: Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: Pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem. 284:28004–28020. 2009. View Article : Google Scholar : PubMed/NCBI

165 

Xiang T, Ohashi A, Huang Y, Pandita TK, Ludwig T, Powell SN and Yang Q: Negative regulation of AKT activation by BRCA1. Cancer Res. 68:10040–10044. 2008. View Article : Google Scholar : PubMed/NCBI

166 

Xiang T, Jia Y, Sherris D, Li S, Wang H, Lu D and Yang Q: Targeting the Akt/mTOR pathway in Brca1-deficient cancers. Oncogene. 30:2443–2450. 2011. View Article : Google Scholar : PubMed/NCBI

167 

Du K and Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 273:32377–32379. 1998. View Article : Google Scholar : PubMed/NCBI

168 

Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K and Fukamizu A: Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA. 102:11278–11283. 2005. View Article : Google Scholar : PubMed/NCBI

169 

Brent MM, Anand R and Marmorstein R: Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure. 16:1407–1416. 2008. View Article : Google Scholar : PubMed/NCBI

170 

Biggs WH III, Meisenhelder J, Hunter T, Cavenee WK and Arden KC: Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA. 96:7421–7426. 1999. View Article : Google Scholar : PubMed/NCBI

171 

Yang H, Zhao R, Yang HY and Lee MH: Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene. 24:1924–1935. 2005. View Article : Google Scholar : PubMed/NCBI

172 

Matsuzaki H, Ichino A, Hayashi T, Yamamoto T and Kikkawa U: Regulation of intracellular localization and transcriptional activity of FOXO4 by protein kinase B through phosphorylation at the motif sites conserved among the FOXO family. J Biochem. 138:485–491. 2005. View Article : Google Scholar : PubMed/NCBI

173 

Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, et al: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene. 30:457–470. 2011. View Article : Google Scholar

174 

Drendall CI, Pham QH and Dietze EC: Purification and characterization of recombinant CH3 domain fragment of the CREB-binding protein. Protein Expr Purif. 70:196–205. 2010. View Article : Google Scholar :

175 

Connor MK, Azmi PB, Subramaniam V, Li H and Seth A: Molecular characterization of ring finger protein 11. Mol Cancer Res. 3:453–461. 2005. View Article : Google Scholar : PubMed/NCBI

176 

Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, et al: The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 325:1134–1138. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Hartman AD, Wilson-Weekes A, Suvannasankha A, Burgess GS, Phillips CA, Hincher KJ, Cripe LD and Boswell HS: Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and proliferation. Exp Hematol. 34:1360–1376. 2006. View Article : Google Scholar : PubMed/NCBI

178 

Kim CK, Lee SB, Nguyen TL, Lee KH, Um SH, Kim J and Ahn JY: Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization. Exp Cell Res. 318:136–143. 2012. View Article : Google Scholar

179 

Deep G, Oberlies NH, Kroll DJ and Agarwal R: Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway. Oncogene. 27:3986–3998. 2008. View Article : Google Scholar : PubMed/NCBI

180 

Milne D, Kampanis P, Nicol S, Dias S, Campbell DG, Fuller-Pace F and Meek D: A novel site of AKT-mediated phosphorylation in the human MDM2 oncoprotein. FEBS Lett. 577:270–276. 2004. View Article : Google Scholar : PubMed/NCBI

181 

Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, et al: The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 27:1932–1943. 2008. View Article : Google Scholar : PubMed/NCBI

182 

Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B and Jacinto E: mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29:3939–3951. 2010. View Article : Google Scholar : PubMed/NCBI

183 

Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE and Mayo MW: Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem. 287:581–588. 2012. View Article : Google Scholar :

184 

Fan CD, Lum MA, Xu C, Black JD and Wang X: Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem. 288:1674–1684. 2013. View Article : Google Scholar :

185 

Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, Fladd C, Parkinson J and Rotin D: Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol. 5(333)2009. View Article : Google Scholar : PubMed/NCBI

186 

Mistafa O, Ghalali A, Kadekar S, Högberg J and Stenius U: Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases. J Biol Chem. 285:27900–27910. 2010. View Article : Google Scholar : PubMed/NCBI

187 

Woods NT, Mesquita RD, Sweet M, Carvalho MA, Li X, Liu Y, Nguyen H, Thomas CE, Iversen ES Jr, Marsillac S, et al: Charting the landscape of tandem BRCT domain-mediated protein interactions. Sci Signal. 5:rs62012. View Article : Google Scholar : PubMed/NCBI

188 

Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL and Sabatini DM: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 22:159–168. 2006. View Article : Google Scholar : PubMed/NCBI

189 

Ikenoue T, Inoki K, Yang Q, Zhou X and Guan KL: Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 27:1919–1931. 2008. View Article : Google Scholar : PubMed/NCBI

190 

Chen CH, Shaikenov T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, Wu J, Lin HK and Sarbassov D: ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci Signal. 4:ra102011. View Article : Google Scholar

191 

Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M and Gupta MP: The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 4:ra462011. View Article : Google Scholar : PubMed/NCBI

192 

Gao D, Inuzuka H, Tseng A, Chin RY, Toker A and Wei W: Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 11:397–408. 2009. View Article : Google Scholar : PubMed/NCBI

193 

Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T and Kolch W: Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res. 70:1195–1203. 2010. View Article : Google Scholar : PubMed/NCBI

194 

Kim D, Shu S, Coppola MD, Kaneko S, Yuan ZQ and Cheng JQ: Regulation of proapoptotic mammalian ste20-like kinase MST2 by the IGF1-Akt pathway. PLoS One. 5:e96162010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X, Wang Y, Wang J and Sun F: Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncol Rep 35: 625-638, 2016.
APA
Zhang, X., Wang, Y., Wang, J., & Sun, F. (2016). Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncology Reports, 35, 625-638. https://doi.org/10.3892/or.2015.4464
MLA
Zhang, X., Wang, Y., Wang, J., Sun, F."Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review)". Oncology Reports 35.2 (2016): 625-638.
Chicago
Zhang, X., Wang, Y., Wang, J., Sun, F."Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review)". Oncology Reports 35, no. 2 (2016): 625-638. https://doi.org/10.3892/or.2015.4464
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Wang Y, Wang J and Sun F: Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncol Rep 35: 625-638, 2016.
APA
Zhang, X., Wang, Y., Wang, J., & Sun, F. (2016). Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncology Reports, 35, 625-638. https://doi.org/10.3892/or.2015.4464
MLA
Zhang, X., Wang, Y., Wang, J., Sun, F."Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review)". Oncology Reports 35.2 (2016): 625-638.
Chicago
Zhang, X., Wang, Y., Wang, J., Sun, F."Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review)". Oncology Reports 35, no. 2 (2016): 625-638. https://doi.org/10.3892/or.2015.4464
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team