|
1
|
Trams EG, Lauter CJ, Salem N Jr and Heine
U: Exfoliation of membrane ecto-enzymes in the form of
micro-vesicles. Biochim Biophys Acta. 645:63–70. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Johnstone RM, Adam M, Hammond JR, Orr L
and Turbide C: Vesicle formation during reticulocyte maturation.
Association of plasma membrane activities with released vesicles
(exosomes). J Biol Chem. 262:9412–9420. 1987.PubMed/NCBI
|
|
3
|
Oosthuyzen W, Sime NEL, Ivy JR, Turtle EJ,
Street JM, Pound J, Bath LE, Webb DJ, Gregory CD, Bailey MA, et al:
Quantification of human urinary exosomes by nanoparticle tracking
analysis. J Physiol. 591:5833–5842. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Street JM, Barran PE, Mackay CL, Weidt S,
Balmforth C, Walsh TS, Chalmers RT, Webb DJ and Dear JW:
Identification and proteomic profiling of exosomes in human
cerebrospinal fluid. J Transl Med. 10:52012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lässer C, Alikhani VS, Ekström K, Eldh M,
Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J and
Valadi H: Human saliva, plasma and breast milk exosomes contain
RNA: Uptake by macrophages. J Transl Med. 9:92011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Théry C: Exosomes: Secreted vesicles and
intercellular communications. F1000 Biol Rep. 3:152011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Umezu T, Ohyashiki K, Kuroda M and
Ohyashiki JH: Leukemia cell to endothelial cell communication via
exosomal miRNAs. Oncogene. 32:2747–2755. 2013. View Article : Google Scholar
|
|
8
|
Vlassov AV, Magdaleno S, Setterquist R and
Conrad R: Exosomes: Current knowledge of their composition,
biological functions, and diagnostic and therapeutic potentials.
Biochim Biophys Acta. 1820:940–948. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
de Jong OG, Verhaar MC, Chen Y, Vader P,
Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW:
Cellular stress conditions are reflected in the protein and RNA
content of endothelial cell-derived exosomes. J Extracell Vesicles.
1:183962012. View Article : Google Scholar
|
|
10
|
Kucharzewska P, Christianson HC, Welch JE,
Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain
E, Bengzon J and Belting M: Exosomes reflect the hypoxic status of
glioma cells and mediate hypoxia-dependent activation of vascular
cells during tumor development. Proc Natl Acad Sci USA.
110:7312–7317. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Arscott WT, Tandle AT, Zhao S, Shabason
JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ and Camphausen KA:
Ionizing radiation and glioblastoma exosomes: Implications in tumor
biology and cell migration. Transl Oncol. 6:638–648. 2013.
View Article : Google Scholar
|
|
12
|
Maheshwari S, Singh AK, Arya RK, Pandey D,
Singh A and Datta D: Exosomes: Emerging players of intercellular
communication in tumor microenvironment. Disoveries. 2:e262014.
View Article : Google Scholar
|
|
13
|
van Dommelen SM, Vader P, Lakhal S,
Kooijmans SA, van Solinge WW, Wood MJ and Schiffelers RM:
Microvesicles and exosomes: Opportunities for cell-derived membrane
vesicles in drug delivery. J Control Release. 161:635–644. 2012.
View Article : Google Scholar
|
|
14
|
Taylor DD and Gercel-Taylor C: The origin,
function, and diagnostic potential of RNA within extracellular
vesicles present in human biological fluids. Front Genet.
4:1422013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kharaziha P, Ceder S, Li Q and Panaretakis
T: Tumor cell-derived exosomes: A message in a bottle. Biochim
Biophys Acta. 1826:103–111. 2012.PubMed/NCBI
|
|
16
|
Escrevente C, Grammel N, Kandzia S, Zeiser
J, Tranfield EM, Conradt HS and Costa J: Sialoglycoproteins and
N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS
One. 8:e786312013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rappa G, Mercapide J, Anzanello F, Pope RM
and Lorico A: Biochemical and biological characterization of
exosomes containing prominin-1/CD133. Mol Cancer. 12:622013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
van den Boorn JG, Dassler J, Coch C,
Schlee M and Hartmann G: Exosomes as nucleic acid nanocarriers. Adv
Drug Deliv Rev. 65:331–335. 2013. View Article : Google Scholar
|
|
19
|
Gross JC, Chaudhary V, Bartscherer K and
Boutros M: Active Wnt proteins are secreted on exosomes. Nat Cell
Biol. 14:1036–1045. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Urbanelli L, Magini A, Buratta S, Brozzi
A, Sagini K, Polchi A, Tancini B and Emiliani C: Signaling pathways
in exosome biogenesis, secretion and fate. Genes. 4:152–170. 2013.
View Article : Google Scholar
|
|
21
|
Bobrie A, Krumeich S, Reyal F, Recchi C,
Moita LF, Seabra MC, Ostrowski M and Théry C: Rab27a supports
exosome-dependent and -independent mechanisms that modify the tumor
microenvironment and can promote tumor progression. Cancer Res.
72:4920–4930. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Frydrychowicz M, Kolecka-Bednarczyk A,
Madejczyk M, Yasar S and Dworacki G: Exosomes - structure,
biogenesis and biological role in non-small-cell lung cancer. Scand
J Immunol. 81:2–10. 2015. View Article : Google Scholar
|
|
24
|
Lachenal G, Pernet-Gallay K, Chivet M,
Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y and
Sadoul R: Release of exosomes from differentiated neurons and its
regulation by synaptic glutamatergic activity. Mol Cell Neurosci.
46:409–418. 2011. View Article : Google Scholar
|
|
25
|
Stoorvogel W, Kleijmeer MJ, Geuze HJ and
Raposo G: The biogenesis and functions of exosomes. Traffic.
3:321–330. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Friel AM, Corcoran C, Crown J and O
Driscoll L: Relevance of circulating tumor cells, extracellular
nucleic acids, and exosomes in breast cancer. Breast Cancer Res
Treat. 123:613–625. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vaksman O, Tropé C, Davidson B and Reich
R: Exosome-derived miRNAs and ovarian carcinoma progression.
Carcinogenesis. 35:2113–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang HG and Grizzle WE: Exosomes: A novel
pathway of local and distant intercellular communication that
facilitates the growth and metastasis of neoplastic lesions. Am J
Pathol. 184:28–41. 2014. View Article : Google Scholar :
|
|
29
|
Nikitina IG, Sabirova EIu, Karpov VL,
Lisitsyn NA and Beresten SF: The role of exosomes and microvesicles
in carcinogenesis. Mol Biol. 47:767–773. 2013.In Russian.
View Article : Google Scholar
|
|
30
|
Martin BJ: Inhibiting vasculogenesis after
radiation: A new paradigm to improve local control by radiotherapy.
Semin Radiat Oncol. 23:281–287. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Roos WP and Kaina B: DNA damage-induced
cell death: From specific DNA lesions to the DNA damage response
and apoptosis. Cancer Lett. 332:237–248. 2013. View Article : Google Scholar
|
|
32
|
Khan S, Jutzy JMS, Aspe JR, McGregor DW,
Neidigh JW and Wall NR: Survivin is released from cancer cells via
exosomes. Apoptosis. 16:1–12. 2011. View Article : Google Scholar :
|
|
33
|
Jalal N, Haq S, Anwar N, Nazeer S and
Saeed U: Radiation induced bystander effect and DNA damage. J
Cancer Res Ther. 10:819–833. 2014. View Article : Google Scholar
|
|
34
|
Sokolov MV and Neumann RD:
Radiation-induced bystander effects in cultured human stem cells.
PLoS One. 5:e141952010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mothersill C and Seymour CB:
Radiation-induced bystander effects - implications for cancer. Nat
Rev Cancer. 4:158–164. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cheng L, Sharples RA, Scicluna BJ and Hill
AF: Exosomes provide a protective and enriched source of miRNA for
biomarker profiling compared to intracellular and cell-free blood.
J Extracell Vesicles. 3:32014.
|
|
37
|
Al-Mayah AHJ, Irons SL, Pink RC, Carter
DRF and Kadhim MA: Possible role of exosomes containing RNA in
mediating nontargeted effect of ionizing radiation. Radiat Res.
177:539–545. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hummel R, Hussey DJ and Haier J:
MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in
different tumour types. Eur J Cancer. 46:298–311. 2010. View Article : Google Scholar
|
|
39
|
Jella KK, Rani S, O Driscoll L, McClean B,
Byrne HJ and Lyng FM: Exosomes are involved in mediating radiation
induced bystander signaling in human keratinocyte cells. Radiat
Res. 181:138–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Savina A, Furlán M, Vidal M and Colombo
MI: Exosome release is regulated by a calcium-dependent mechanism
in K562 cells. J Biol Chem. 278:20083–20090. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rubiś B, Hołysz H, Barczak W, Gryczka R,
Łaciński M, Jagielski P, Czernikiewicz A, Półrolniczak A, Wojewoda
A, Perz K, et al: Study of ABCB1 polymorphism frequency in breast
cancer patients from Poland. Pharmacol Rep. 64:1560–1566. 2012.
View Article : Google Scholar
|
|
42
|
Eckford PDW and Sharom FJ: ABC efflux
pump-based resistance to chemotherapy drugs. Chem Rev.
109:2989–3011. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rodriguez-Antona C and Ingelman-Sundberg
M: Cytochrome P450 pharmacogenetics and cancer. Oncogene.
25:1679–1691. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rebucci M and Michiels C: Molecular
aspects of cancer cell resistance to chemotherapy. Biochem
Pharmacol. 85:1219–1226. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Luciani F, Spada M, De Milito A, Molinari
A, Rivoltini L, Montinaro A, Marra M, Lugini L, Logozzi M, Lozupone
F, et al: Effect of proton pump inhibitor pretreatment on
resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst.
96:1702–1713. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Safaei R, Larson BJ, Cheng TC, Gibson MA,
Otani S, Naerdemann W and Howell SB: Abnormal lysosomal trafficking
and enhanced exosomal export of cisplatin in drug-resistant human
ovarian carcinoma cells. Mol Cancer Ther. 4:1595–1604. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ciravolo V, Huber V, Ghedini GC,
Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della
Mina P, Menard S, et al: Potential role of HER2-overexpressing
exosomes in countering trastuzumab-based therapy. J Cell Physiol.
227:658–667. 2012. View Article : Google Scholar
|
|
48
|
Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu
Y and Feng J: Exosomes: Decreased sensitivity of lung cancer A549
cells to cisplatin. PLoS One. 9:e895342014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen WX, Liu XM, Lv MM, Chen L, Zhao JH,
Zhong SL, Ji MH, Hu Q, Luo Z, Wu JZ, et al: Exosomes from
drug-resistant breast cancer cells transmit chemoresistance by a
horizontal transfer of microRNAs. PLoS One. 9:e952402014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Vella LJ: The emerging role of exosomes in
epithelial-mesenchymal-transition in cancer. Front Oncol.
4:3612014. View Article : Google Scholar
|
|
51
|
Nishikata T, Ishikawa M, Matsuyama T,
Takamatsu K, Fukuhara T and Konishi Y: Primary culture of breast
cancer: A model system for epithelial-mesenchymal transition and
cancer stem cells. Anticancer Res. 33:2867–2873. 2013.PubMed/NCBI
|
|
52
|
Qureshi R, Arora H and Rizvi MA: EMT in
cervical cancer: Its role in tumour progression and response to
therapy. Cancer Lett. 356:321–331. 2015. View Article : Google Scholar
|
|
53
|
Davidson B, Tropé CG and Reich R:
Epithelial-mesenchymal transition in ovarian carcinoma. Front
Oncol. 2:332012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gou WF, Zhao Y, Lu H, Yang XF, Xiu YL,
Zhao S, Liu JM, Zhu ZT, Sun HZ, Liu YP, et al: The role of RhoC in
epithelial-to-mesenchymal transition of ovarian carcinoma cells.
BMC Cancer. 14:4772014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Geng SQ, Alexandrou AT and Li JJ: Breast
cancer stem cells: Multiple capacities in tumor metastasis. Cancer
Lett. 349:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shimoda M and Khokha R: Proteolytic
factors in exosomes. Proteomics. 13:1624–1636. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tauro BJ, Mathias RA, Greening DW, Gopal
SK, Ji H, Kapp EA, Coleman BM, Hill AF, Kusebauch U, Hallows JL, et
al: Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK)
cell-derived exosomal proteins following epithelial-mesenchymal
transition. Mol Cell Proteomics. 12:2148–2159. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Webber J, Steadman R, Mason MD, Tabi Z and
Clayton A: Cancer exosomes trigger fibroblast to myofibroblast
differentiation. Cancer Res. 70:9621–9630. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Borges FT, Melo SA, Özdemir BC, Kato N,
Revuelta I, Miller CA, Gattone VH II, LeBleu VS and Kalluri R:
TGF-β1-containing exosomes from injured epithelial cells activate
fibroblasts to initiate tissue regenerative responses and fibrosis.
J Am Soc Nephrol. 24:385–392. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Luga V, Zhang L, Viloria-Petit AM,
Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and
Wrana JL: Exosomes mediate stromal mobilization of autocrine
Wnt-PCP signaling in breast cancer cell migration. Cell.
151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Da Forno PD, Pringle JH, Hutchinson P,
Osborn J, Huang Q, Potter L, Hancox RA, Fletcher A and Saldanha GS:
WNT5A expression increases during melanoma progression and
correlates with outcome. Clin Cancer Res. 14:5825–5832. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ekström EJ, Bergenfelz C, von Bülow V,
Serifler F, Carlemalm E, Jönsson G, Andersson T and Leandersson K:
WNT5A induces release of exosomes containing pro-angiogenic and
immunosuppressive factors from malignant melanoma cells. Mol
Cancer. 13:882014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
McCready J, Sims JD, Chan D and Jay DG:
Secretion of extracellular hsp90alpha via exosomes increases cancer
cell motility: A role for plasminogen activation. BMC Cancer.
10:2942010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hendrix A, Westbroek W, Bracke M and De
Wever O: An ex(o) citing machinery for invasive tumor growth.
Cancer Res. 70:9533–9537. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kucharzewska P and Belting M: Emerging
roles of extracellular vesicles in the adaptive response of tumour
cells to microenvironmental stress. J Extracell Vesicles.
2:203042013. View Article : Google Scholar
|
|
66
|
Grange C, Tapparo M, Collino F, Vitillo L,
Damasco C, Deregibus MC, Tetta C, Bussolati B and Camussi G:
Microvesicles released from human renal cancer stem cells stimulate
angiogenesis and formation of lung premetastatic niche. Cancer Res.
71:5346–5356. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Diaz-Cano SJ: Tumor heterogeneity:
Mechanisms and bases for a reliable application of molecular marker
design. Int J Mol Sci. 13:1951–2011. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
De Palma M and Hanahan D: The biology of
personalized cancer medicine: Facing individual complexities
underlying hallmark capabilities. Mol Oncol. 6:111–127. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Igney FH and Krammer PH: Immune escape of
tumors: Apoptosis resistance and tumor counterattack. J Leukoc
Biol. 71:907–920. 2002.PubMed/NCBI
|
|
70
|
Kim R, Emi M and Tanabe K: Cancer
immunoediting from immune surveillance to immune escape.
Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Whiteside TL, Mandapathil M, Szczepanski M
and Szajnik M: Mechanisms of tumor escape from the immune system:
Adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull
Cancer. 98:E25–E31. 2011.PubMed/NCBI
|
|
72
|
Mandapathil M, Lang S, Gorelik E and
Whiteside TL: Isolation of functional human regulatory T cells
(Treg) from the peripheral blood based on the CD39 expression. J
Immunol Methods. 346:55–63. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mandapathil M, Hilldorfer B, Szczepanski
MJ, Czystowska M, Szajnik M, Ren J, Lang S, Jackson EK, Gorelik E
and Whiteside TL: Generation and accumulation of immunosuppressive
adenosine by human
CD4+CD25highFOXP3+ regulatory T
cells. J Biol Chem. 285:7176–7186. 2010. View Article : Google Scholar :
|
|
74
|
Clayton A, Al-Taei S, Webber J, Mason MD
and Tabi Z: Cancer exosomes express CD39 and CD73, which suppress T
cells through adenosine production. J Immunol. 187:676–683. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pardali K and Moustakas A: Actions of
TGF-beta as tumor suppressor and pro-metastatic factor in human
cancer. Biochim Biophys Acta. 1775:21–62. 2007.
|
|
76
|
Szczepanski MJ, Szajnik M, Welsh A,
Whiteside TL and Boyiadzis M: Blast-derived microvesicles in sera
from patients with acute myeloid leukemia suppress natural killer
cell function via membrane-associated transforming growth
factor-beta1. Haematologica. 96:1302–1309. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mincheva-Nilsson L and Baranov V: Cancer
exosomes and NKG2D receptor-ligand interactions: Impairing
NKG2D-mediated cytotoxicity and anti-tumour immune surveillance.
Semin Cancer Biol. 28:24–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Szajnik M, Czystowska M, Szczepanski MJ,
Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce,
expand and up-regulate biological activities of human regulatory T
cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Whiteside TL: What are regulatory T cells
(Treg) regulating in cancer and why? Semin Cancer Biol. 22:327–334.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Stenqvist AC, Nagaeva O, Baranov V and
Mincheva-Nilsson L: Exosomes secreted by human placenta carry
functional Fas ligand and TRAIL molecules and convey apoptosis in
activated immune cells, suggesting exosome-mediated immune
privilege of the fetus. J Immunol. 191:5515–5523. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim
TE, Chin JL and Min WP: Tumor exosomes expressing Fas ligand
mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis.
35:169–173. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bergmann C, Strauss L, Wieckowski E,
Czystowska M, Albers A, Wang Y, Zeidler R, Lang S and Whiteside TL:
Tumor-derived microvesicles in sera of patients with head and neck
cancer and their role in tumor progression. Head Neck. 31:371–380.
2009. View Article : Google Scholar :
|