3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model

Retraction in: /10.3892/or.2021.7980

  • Authors:
    • Kai Liu
    • Yue-Hong Qin
    • Jian-Yong Yu
    • Heng Ma
    • Xi-Lin Song
  • View Affiliations

  • Published online on: February 3, 2016     https://doi.org/10.3892/or.2016.4610
  • Pages: 2328-2338
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The objective of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of 3-β-erythrodiol, a plant-derived triterpene against MKN-45 human gastric cancer cells. In addition, effects on cellular morphology, cell cycle phase distribution, DNA fragmentation, and ROS generation were also elucidated in the current research work. Cytotoxic activity of 3-β-erythrodiol was demonstrated by MTT cell viability and LDH assay. Cellular morphological study was carried out using phase contrast, fluorescence and scanning electron microscopy. Cell cycle analysis was evaluated by flow cytometry and gel electrophoresis was used to evaluate DNA fragmentation pattern. The results of the present study revealed that 3-β-erythrodiol induced dose-dependent as well as time-dependent anticancer effects in MKN-45 gastric cancer cells. Cellular morphological changes in MKN-45 cells as indicated by fluorescence and scanning electron microscopy were induced by 3-β-erythrodiol. This triterpene induced both early and late apoptotic features in these cancer cells. 3-β-Erythrodiol treatment led to sub-G1 cell cycle arrest with a corresponding decrease in S-phase cells and an increase in G2/M phase cells. DNA fragments were evident in gel electrophoresis experiment following 3-β-erythrodiol treatment. It was observed that 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor weight from 1.4 g in PBS-treated group (control) to 0.61 and 0.22 g, respectively. Similarly, 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor volume from 1.5 cm3 in PBS-treated group (control) to 0.91 and 0.31 cm3, respectively. The present investigation indicates that 3-β-erythrodiol exerts anti-proliferative effects in human gastric cancer by inducing early and late apoptosis, cell cycle arrest, and ROS generation. It also decreased the tumor volume and tumor weight in male Balb/c nude mice.
View Figures
View References

Related Articles

Journal Cover

April-2016
Volume 35 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Liu K, Qin Y, Yu J, Ma H and Song X: 3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model Retraction in /10.3892/or.2021.7980. Oncol Rep 35: 2328-2338, 2016
APA
Liu, K., Qin, Y., Yu, J., Ma, H., & Song, X. (2016). 3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model Retraction in /10.3892/or.2021.7980. Oncology Reports, 35, 2328-2338. https://doi.org/10.3892/or.2016.4610
MLA
Liu, K., Qin, Y., Yu, J., Ma, H., Song, X."3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model Retraction in /10.3892/or.2021.7980". Oncology Reports 35.4 (2016): 2328-2338.
Chicago
Liu, K., Qin, Y., Yu, J., Ma, H., Song, X."3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model Retraction in /10.3892/or.2021.7980". Oncology Reports 35, no. 4 (2016): 2328-2338. https://doi.org/10.3892/or.2016.4610