|
1
|
Jackman DM, Miller VA, Cioffredi LA, Yeap
BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV and Johnson
BE: Impact of epidermal growth factor receptor and KRAS mutations
on clinical outcomes in previously untreated non-small cell lung
cancer patients: Results of an online tumor registry of clinical
trials. Clin Cancer Res. 15:5267–5273. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Godin-Heymann N, Bryant I, Rivera MN,
Ulkus L, Bell DW, Riese DJ II, Settleman J and Haber DA: Oncogenic
activity of epidermal growth factor receptor kinase mutant alleles
is enhanced by the T790M drug resistance mutation. Cancer Res.
67:7319–7326. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
McDermott U, Pusapati RV, Christensen JG,
Gray NS and Settleman J: Acquired resistance of non-small cell lung
cancer cells to MET kinase inhibition is mediated by a switch to
epidermal growth factor receptor dependency. Cancer Res.
70:1625–1634. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yamamoto C, Basaki Y, Kawahara A,
Nakashima K, Kage M, Izumi H, Kohno K, Uramoto H, Yasumoto K,
Kuwano M, et al: Loss of PTEN expression by blocking nuclear
translocation of EGR1 in gefitinib-resistant lung cancer cells
harboring epidermal growth factor receptor-activating mutations.
Cancer Res. 70:8715–8725. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee JT: Epigenetic regulation by long
noncoding RNAs. Science. 338:1435–1439. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Qiu M, Xu Y, Yang X, Wang J, Hu J, Xu L
and Yin R: CCAT2 is a lung adenocarcinoma-specific long non-coding
RNA and promotes invasion of non-small cell lung cancer. Tumour
Biol. 35:5375–5380. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gutschner T, Hämmerle M, Eissmann M, Hsu
J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, et al:
The noncoding RNA MALAT1 is a critical regulator of the metastasis
phenotype of lung cancer cells. Cancer Res. 73:1180–1189. 2013.
View Article : Google Scholar :
|
|
8
|
Liu XH, Liu ZL, Sun M, Liu J, Wang ZX and
De W: The long non-coding RNA HOTAIR indicates a poor prognosis and
promotes metastasis in non-small cell lung cancer. BMC Cancer.
13:4642013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu Z1, Sun M, Lu K, Liu J, Zhang M, Wu W,
De W, Wang Z and Wang R: The long noncoding RNA HOTAIR contributes
to cisplatin resistance of human lung adenocarcinoma cells via
downregualtion of p21WAF1/CIP1 expression. PLoS One.
8:e772932013. View Article : Google Scholar
|
|
10
|
Dong S, Qu X, Li W, Zhong X, Li P, Yang S,
Chen X, Shao M and Zhang L: The long non-coding RNA, GAS5, enhances
gefitinib-induced cell death in innate EGFR tyrosine kinase
inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR
via downregulation of the IGF-1R expression. J Hematol Oncol.
8:432015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wu Y, Yu DD, Hu Y, Cao HX, Yu SR, Liu SW
and Feng JF: LXR ligands sensitize EGFR-TKI-resistant human lung
cancer cells in vitro by inhibiting Akt activation. Biochem Biophys
Res Commun. 467:900–905. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
13
|
Guttman M, Amit I, Garber M, French C, Lin
MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al:
Chromatin signature reveals over a thousand highly conserved large
non-coding RNAs in mammals. Nature. 458:223–227. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Efron B and Tibshirani R: Empirical bayes
methods and false discovery rates for microarrays. Genet Epidemiol.
23:70–86. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Guttman M, Donaghey J, Carey BW, Garber M,
Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al:
lincRNAs act in the circuitry controlling pluripotency and
differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Remon J, Morán T, Majem M, Reguart N,
Dalmau E, Márquez-Medina D and Lianes P: Acquired resistance to
epidermal growth factor receptor tyrosine kinase inhibitors in
EGFR-mutant non-small cell lung cancer: A new era begins. Cancer
Treat Rev. 40:93–101. 2014. View Article : Google Scholar
|
|
17
|
Li LH, Wu P, Lee JY, Li PR, Hsieh WY, Ho
CC, Ho CL, Chen WJ, Wang CC, Yen MY, et al: Hinokitiol induces DNA
damage and autophagy followed by cell cycle arrest and senescence
in gefitinib-resistant lung adenocarcinoma cells. PLoS One.
9:e1042032014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ju L and Zhou C: Association of integrin
beta1 and c-MET in mediating EGFR TKI gefitinib resistance in
non-small cell lung cancer. Cancer Cell Int. 13:152013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Terai H, Soejima K, Yasuda H, Sato T,
Naoki K, Ikemura S, Arai D, Ohgino K, Ishioka K, Hamamoto J, et al:
Long-term exposure to gefitinib induces acquired resistance through
DNA methylation changes in the EGFR-mutant PC9 lung cancer cell
line. Int J Oncol. 46:430–436. 2015.
|
|
20
|
Ørom UA, Derrien T, Beringer M, Gumireddy
K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q,
et al: Long noncoding RNAs with enhancer-like function in human
cells. Cell. 143:46–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang X, Zhang Y, Hosaka K, Andersson P,
Wang J, Tholander F, Cao Z, Morikawa H, Tegnér J, Yang Y, et al:
VEGF-B promotes cancer metastasis through a VEGF-A-independent
mechanism and serves as a marker of poor prognosis for cancer
patients. Proc Natl Acad Sci USA. 112:E2900–E2909. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guttman M and Rinn JL: Modular regulatory
principles of large non-coding RNAs. Nature. 482:339–346. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Vaishnav YNV, Vaishnav MY and Pant V: The
molecular and functional characterization of E2F-5 transcription
factor. Biochem Biophys Res Commun. 242:586–592. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stewart ZA, Westfall MD and Pietenpol JA:
Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol
Sci. 24:139–145. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Suenaga M, Yamaguchi A, Soda H, Orihara K,
Tokito Y, Sakaki Y, Umehara M, Terashi K, Kawamata N, Oka M, et al:
Antiproliferative effects of gefitinib are associated with
suppression of E2F-1 expression and telomerase activity. Anticancer
Res. 26:3387–3391. 2006.PubMed/NCBI
|
|
26
|
Okabe T, Okamoto I, Tsukioka S, Uchida J,
Hatashita E, Yamada Y, Yoshida T, Nishio K, Fukuoka M, Jänne PA, et
al: Addition of S-1 to the epidermal growth factor receptor
inhibitor gefitinib overcomes gefitinib resistance in non-small
cell lung cancer cell lines with MET amplification. Clin Cancer
Res. 15:907–913. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lindeman GJ, Gaubatz S, Livingston DM and
Ginsberg D: The subcellular localization of E2F-4 is cell-cycle
dependent. Proc Natl Acad Sci USA. 94:5095–5100. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mikkelsen TS, Ku M, Jaffe DB, Issac B,
Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP,
et al: Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature. 448:553–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rakha EA, Pinder SE, Paish EC, Robertson
JF and Ellis IO: Expression of E2F-4 in invasive breast carcinomas
is associated with poor prognosis. J Pathol. 203:754–761. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Garneau H, Paquin MC, Carrier JC and
Rivard N: E2F4 expression is required for cell cycle progression of
normal intestinal crypt cells and colorectal cancer cells. J Cell
Physiol. 221:350–358. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Molina-Privado I, Jiménez-P R,
Montes-Moreno S, Chiodo Y, Rodríguez-Martínez M, Sánchez-Verde L,
Iglesias T, Piris MA and Campanero MR: E2F4 plays a key role in
Burkitt lymphoma tumorigenesis. Leukemia. 26:2277–2285. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sirito M, Lin Q, Deng JM, Behringer RR and
Sawadogo M: Overlapping roles and asymmetrical cross-regulation of
the USF proteins in mice. Proc Natl Acad Sci USA. 95:3758–3763.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nielsen FC, Pedersen K, Hansen TV, Rourke
IJ and Rehfeld JF: Transcriptional regulation of the human
cholecystokinin gene: Composite action of upstream stimulatory
factor, Sp1, and members of the CREB/ATF-AP-1 family of
transcription factors. DNA Cell Biol. 15:53–63. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Viney TJ, Schmidt TW, Gierasch W, Sattar
AW, Yaggie RE, Kuburas A, Quinn JP, Coulson JM and Russo AF:
Regulation of the cell-specific calcitonin/calcitonin gene-related
peptide enhancer by USF and the Foxa2 forkhead protein. J Biol
Chem. 279:49948–49955. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Paterson JM, Morrison CF, Mendelson SC,
McAllister J and Quinn JP: An upstream stimulatory factor (USF)
binding motif is critical for rat preprotachykinin-A promoter
activity in PC12 cells. Biochem J. 310:401–406. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hadsell DL, Bonnette S, George J, Torres
D, Klimentidis Y, Gao S, Haney PM, Summy-Long J, Soloff MS, Parlow
AF, et al: Diminished milk synthesis in upstream stimulatory factor
2 null mice is associated with decreased circulating oxytocin and
decreased mammary gland expression of eukaryotic initiation factors
4E and 4G. Mol Endocrinol. 17:2251–2267. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gao E, Wang Y, Alcorn JL and Mendelson CR:
Transcription factor USF2 is developmentally regulated in fetal
lung and acts together with USF1 to induce SP-A gene expression. Am
J Physiol Lung Cell Mol Physiol. 284:L1027–L1036. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Coulson JM, Edgson JL, Marshall-Jones ZV,
Mulgrew R, Quinn JP and Woll PJ: Upstream stimulatory factor
activates the vasopressin promoter via multiple motifs, including a
non-canonical E-box. Biochem J. 369:549–561. 2003. View Article : Google Scholar
|
|
39
|
McMurray HR and McCance DJ: Human
papillomavirus type 16 E6 activates TERT gene transcription through
induction of c-Myc and release of USF-mediated repression. J Virol.
77:9852–9861. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goueli BS and Janknecht R: Regulation of
telomerase reverse transcriptase gene activity by upstream
stimulatory factor. Oncogene. 22:8042–8047. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pawar SA, Szentirmay MN, Hermeking H and
Sawadogo M: Evidence for a cancer-specific switch at the CDK4
promoter with loss of control by both USF and c-Myc. Oncogene.
23:6125–6135. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Coulson JM, Fiskerstrand CE, Woll PJ and
Quinn JP: E-box motifs within the human vasopressin gene promoter
contribute to a major enhancer in small-cell lung cancer. Biochem
J. 344:961–970. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Grace CO, Fink G and Quinn JP:
Characterization of potential regulatory elements within the rat
arginine vasopressin proximal promoter. Neuropeptides. 33:81–90.
1999. View Article : Google Scholar
|
|
44
|
Khattar NH, Lele SM and Kaetzel CS:
Down-regulation of the polymeric immunoglobulin receptor in
non-small cell lung carcinoma: Correlation with dysregulated
expression of the transcription factors USF and AP2. J Biomed Sci.
12:65–77. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ocejo-Garcia M, Baokbah TA, Ashurst HL,
Cowlishaw D, Soomro I, Coulson JM and Woll PJ: Roles for USF-2 in
lung cancer proliferation and bronchial carcinogenesis. J Pathol.
206:151–159. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen B, Hsu R, Li Z, Kogut PC, Du Q,
Rouser K, Camoretti-Mercado B and Solway J: Upstream stimulatory
factor 1 activates GATA5 expression through an E-box motif. Biochem
J. 446:89–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kakita T, Hasegawa K, Morimoto T, Kaburagi
S, Wada H and Sasayama S: p300 protein as a coactivator of GATA-5
in the transcription of cardiac-restricted atrial natriuretic
factor gene. J Biol Chem. 274:34096–34102. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Singh MK, Li Y, Li S, Cobb RM, Zhou D, Lu
MM, Epstein JA, Morrisey EE and Gruber PJ: Gata4 and Gata5
cooperatively regulate cardiac myocyte proliferation in mice. J
Biol Chem. 285:1765–1772. 2010. View Article : Google Scholar :
|
|
49
|
Tummala R, Romano RA, Fuchs E and Sinha S:
Molecular cloning and characterization of AP-2 epsilon, a fifth
member of the AP-2 family. Gene. 321:93–102. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hoffman TL, Javier AL, Campeau SA, Knight
RD and Schilling TF: Tfap2 transcription factors in zebrafish
neural crest development and ectodermal evolution. J Exp Zoolog B
Mol Dev Evol. 308:679–691. 2007. View Article : Google Scholar
|
|
51
|
Kuckenberg P, Kubaczka C and Schorle H:
The role of transcription factor Tcfap2c/TFAP2C in trophectoderm
development. Reprod Biomed Online. 25:12–20. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li W and Cornell RA: Redundant activities
of Tfap2a and Tfap2c are required for neural crest induction and
development of other non-neural ectoderm derivatives in zebrafish
embryos. Dev Biol. 304:338–354. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li X, Glubrecht DD and Godbout R: AP2
transcription factor induces apoptosis in retinoblastoma cells.
Genes Chromosomes Cancer. 49:819–830. 2010.PubMed/NCBI
|
|
54
|
Van Otterloo E, Li W, Garnett A, Cattell
M, Medeiros DM and Cornell RA: Novel Tfap2-mediated control of soxE
expression facilitated the evolutionary emergence of the neural
crest. Development. 139:720–730. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rappoport JZ and Simon SM: Endocytic
trafficking of activated EGFR is AP-2 dependent and occurs through
preformed clathrin spots. J Cell Sci. 122:1301–1305. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Park JM, Wu T, Cyr AR, Woodfield GW, De
Andrade JP, Spanheimer PM, Li T, Sugg SL, Lal G, Domann FE, et al:
The role of Tcfap2c in tumorigenesis and cancer growth in an
activated Neu model of mammary carcinogenesis. Oncogene.
34:6105–6104. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Perkins SM, Bales C, Vladislav T, Althouse
S, Miller KD, Sandusky G, Badve S and Nakshatri H: TFAP2C
expression in breast cancer: Correlation with overall survival
beyond 10 years of initial diagnosis. Breast Cancer Res Treat.
152:519–531. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Derrien T, Johnson R, Bussotti G, Tanzer
A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG,
et al: The GENCODE v7 catalog of human long noncoding RNAs:
Analysis of their gene structure, evolution, and expression. Genome
Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|