|
1
|
Runkle EA and Mu D: Tight junction
proteins: From barrier to tumorigenesis. Cancer Lett. 337:41–48.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Martìn-Padura I, Lostaglio S, Schneemann
M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A,
Ruco L, Villa A, et al: Junctional adhesion molecule, a novel
member of the immunoglobulin superfamily that distributes at
intercellular junctions and modulates monocyte transmigration. J
Cell Biol. 142:117–127. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu Y, Nusrat A, Schnell FJ, Reaves TA,
Walsh S, Pochet M and Parkos CA: Human junction adhesion molecule
regulates tight junction resealing in epithelia. J Cell Sci.
113:2363–2374. 2000.PubMed/NCBI
|
|
4
|
Mandell KJ and Parkos CA: The JAM family
of proteins. Adv Drug Deliv Rev. 57:857–867. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Martin TA, Watkins G, Mansel RE and Jiang
WG: Loss of tight junction plaque molecules in breast cancer
tissues is associated with a poor prognosis in patients with breast
cancer. Eur J Cancer. 40:2717–2725. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Martin TA, Mansel RE and Jiang WG:
Antagonistic effect of NK4 on HGF/SF induced changes in the
transendothelial resistance (TER) and paracellular permeability of
human vascular endothelial cells. J Cell Physiol. 192:268–275.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hoevel T, Macek R, Mundigl O, Swisshelm K
and Kubbies M: Expression and targeting of the tight junction
protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell
Physiol. 191:60–68. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Itoh M, Sasaki H, Furuse M, Ozaki H, Kita
T and Tsukita S: Junctional adhesion molecule (JAM) binds to PAR-3:
A possible mechanism for the recruitment of PAR-3 to tight
junctions. J Cell Biol. 154:491–497. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tajima M, Hirabayashi S, Yao I, Shirasawa
M, Osuga J, Ishibashi S, Fujita T and Hata Y: Roles of
immunoglobulin-like loops of junctional cell adhesion molecule 4;
involvement in the subcellular localization and the cell adhesion.
Genes Cells. 8:759–768. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liang TW, DeMarco RA, Mrsny RJ, Gurney A,
Gray A, Hooley J, Aaron HL, Huang A, Klassen T, Tumas DB, et al:
Characterization of huJAM: Evidence for involvement in cell-cell
contact and tight junction regulation. Am J Physiol Cell Physiol.
279:C1733–C1743. 2000.PubMed/NCBI
|
|
11
|
Liang TW, Chiu HH, Gurney A, Sidle A,
Tumas DB, Schow P, Foster J, Klassen T, Dennis K, DeMarco RA, et
al: Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM
2 interacts with T, NK, and dendritic cells through JAM 3. J
Immunol. 168:1618–1626. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Martin TA and Jiang WG: Loss of tight
junction barrier function and its role in cancer metastasis.
Biochim Biophys Acta. 1788:872–891. 2009. View Article : Google Scholar
|
|
13
|
Bazzoni G: The JAM family of junctional
adhesion molecules. Curr Opin Cell Biol. 15:525–530. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cunningham SA, Arrate MP, Rodriguez JM,
Bjercke RJ, Vanderslice P, Morris AP and Brock TA: A novel protein
with homology to the junctional adhesion molecule. Characterization
of leukocyte interactions. J Biol Chem. 275:34750–34756. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hirabayashi S, Tajima M, Yao I, Nishimura
W, Mori H and Hata Y: JAM4, a junctional cell adhesion molecule
interacting with a tight junction protein, MAGI-1. Mol Cell Biol.
23:4267–4282. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shin K, Fogg VC and Margolis B: Tight
junctions and cell polarity. Annu Rev Cell Dev Biol. 22:207–235.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ebnet K, Suzuki A, Ohno S and Vestweber D:
Junctional adhesion molecules (JAMs): More molecules with dual
functions? J Cell Sci. 117:19–29. 2004. View Article : Google Scholar
|
|
18
|
Aurrand-Lions M, Johnson-Leger C, Wong C,
Du Pasquier L and Imhof BA: Heterogeneity of endothelial junctions
is reflected by differential expression and specific subcellular
localization of the three JAM family members. Blood. 98:3699–3707.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Garrido-Urbani S, Bradfield PF and Imhof
BA: Tight junction dynamics: The role of junctional adhesion
molecules (JAMs). Cell Tissue Res. 355:701–715. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Prota AE, Campbell JA, Schelling P,
Forrest JC, Watson MJ, Peters TR, Aurrand-Lions M, Imhof BA,
Dermody TS and Stehle T: Crystal structure of human junctional
adhesion molecule 1: Implications for reovirus binding. Proc Natl
Acad Sci USA. 100:5366–5371. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kostrewa D, Brockhaus M, D'Arcy A, Dale
GE, Nelboeck P, Schmid G, Mueller F, Bazzoni G, Dejana E, Bartfai
T, et al: X-ray structure of junctional adhesion molecule:
Structural basis for homophilic adhesion via a novel dimerization
motif. EMBO J. 20:4391–4398. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Naik UP, Ehrlich YH and Kornecki E:
Mechanisms of platelet activation by a stimulatory antibody:
Cross-linking of a novel platelet receptor for monoclonal antibody
F11 with the Fc gamma RII receptor. Biochem J. 310:155–162. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Malergue F, Galland F, Martin F, Mansuelle
P, Aurrand-Lions M and Naquet P: A novel immunoglobulin superfamily
junctional molecule expressed by antigen presenting cells,
endothelial cells and platelets. Mol Immunol. 35:1111–1119. 1998.
View Article : Google Scholar
|
|
24
|
Williams LA, Martin-Padura I, Dejana E,
Hogg N and Simmons DL: Identification and characterisation of human
junctional adhesion molecule (JAM). Mol Immunol. 36:1175–1188.
1999. View Article : Google Scholar
|
|
25
|
Palmeri D, van Zante A, Huang CC,
Hemmerich S and Rosen SD: Vascular endothelial junction-associated
molecule, a novel member of the immunoglobulin superfamily, is
localized to intercellular boundaries of endothelial cells. J Biol
Chem. 275:19139–19145. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kobayashi I, Kobayashi-Sun J, Kim AD,
Pouget C, Fujita N, Suda T and Traver D: JAM1a-JAM2a interactions
regulate haematopoietic stem cell fate through Notch signalling.
Nature. 512:319–323. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bazzoni G and Dejana E: Endothelial
cell-to-cell junctions: Molecular organization and role in vascular
homeostasis. Physiol Rev. 84:869–901. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wegmann F, Ebnet K, Du Pasquier L,
Vestweber D and Butz S: Endothelial adhesion molecule ESAM binds
directly to the multidomain adaptor MAGI-1 and recruits it to cell
contacts. Exp Cell Res. 300:121–133. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Naik MU and Naik UP: Junctional adhesion
molecule-A-induced endothelial cell migration on vitronectin is
integrin alpha v beta 3 specific. J Cell Sci. 119:490–499. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mirza M, Raschperger E, Philipson L,
Pettersson RF and Sollerbrant K: The cell surface protein
coxsackie- and adenovirus receptor (CAR) directly associates with
the Ligand-of-Numb Protein-X2 (LNX2). Exp Cell Res. 309:110–120.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sobocka MB, Sobocki T, Babinska A, Hartwig
JH, Li M, Ehrlich YH and Kornecki E: Signaling pathways of the F11
receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R
dimerization, phosphorylation and complex formation with the
integrin GPIIIa. J Recept Signal Transduct Res. 24:85–105. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Reymond N, Garrido-urbani S, Borg JP,
Dubreuil P and Lopez M: PICK-1: A scaffold protein that interacts
with Nectins and JAMs at cell junctions. FEBS Lett. 579:2243–2249.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kansaku A, Hirabayashi S, Mori H, Fujiwara
N, Kawata A, Ikeda M, Rokukawa C, Kurihara H and Hata Y:
Ligand-of-Numb protein X is an endocytic scaffold for junctional
adhesion molecule 4. Oncogene. 25:5071–5084. 2006.PubMed/NCBI
|
|
34
|
Butcher EC and Picker LJ: Lymphocyte
homing and homeostasis. Science. 272:60–66. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Santoso S, Sachs UJH, Kroll H, Linder M,
Ruf A, Preissner KT and Chavakis T: The junctional adhesion
molecule 3 (JAM-3) on human platelets is a counterreceptor for the
leukocyte integrin Mac-1. J Exp Med. 196:679–691. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Moog-Lutz C, Cavé-Riant F, Guibal FC,
Breau MA, Di Gioia Y, Couraud PO, Cayre YE, Bourdoulous S and Lutz
PG: JAML, a novel protein with characteristics of a junctional
adhesion molecule, is induced during differentiation of myeloid
leukemia cells. Blood. 102:3371–3378. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cunningham SA, Rodriguez JM, Arrate MP,
Tran TM and Brock TA: JAM2 interacts with alpha4beta1. Facilitation
by JAM3. J Biol Chem. 277:27589–27592. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Arrate MP, Rodriguez JM, Tran TM, Brock TA
and Cunningham SA: Cloning of human junctional adhesion molecule 3
(JAM3) and its identification as the JAM2 counter-receptor. J Biol
Chem. 276:45826–45832. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Johnson-Léger CA, Aurrand-Lions M,
Beltraminelli N, Fasel N and Imhof BA: Junctional adhesion
molecule-2 (JAM-2) promotes lymphocyte transendothelial migration.
Blood. 100:2479–2486. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Langer HF, Daub K, Braun G, Schönberger T,
May AE, Schaller M, Stein GM, Stellos K, Bueltmann A, Siegel-Axel
D, et al: Platelets recruit human dendritic cells via Mac-1/JAM-C
interaction and modulate dendritic cell function in vitro.
Arterioscler Thromb Vasc Biol. 27:1463–1470. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ludwig RJ, Hardt K, Hatting M, Bistrian R,
Diehl S, Radeke HH, Podda M, Schön MP, Kaufmann R, Henschler R, et
al: Junctional adhesion molecule (JAM)-B supports lymphocyte
rolling and adhesion through interaction with alpha4beta1 integrin.
Immunol. 128:196–205. 1990. View Article : Google Scholar
|
|
42
|
Keiper T, Al-Fakhri N, Chavakis E,
Athanasopoulos AN, Isermann B, Herzog S, Saffrich R, Hersemeyer K,
Bohle RM, Haendeler J, et al: The role of junctional adhesion
molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment.
FASEB J. 19:2078–2080. 2005.PubMed/NCBI
|
|
43
|
Aurrand-Lions M, Lamagna C, Dangerfield
JP, Wang S, Herrera P, Nourshargh S and Imhof BA: Junctional
adhesion molecule-C regulates the early influx of leukocytes into
tissues during inflammation. J Immunol. 174:6406–6415. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lamagna C, Meda P, Mandicourt G, Brown J,
Gilbert RJ, Jones EY, Kiefer F, Ruga P, Imhof BA and Aurrand-Lions
M: Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin:
Function in junctional complexes and leukocyte adhesion. Mol Biol
Cell. 16:4992–5003. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gliki G, Ebnet K, Aurrand-Lions M, Imhof
BA and Adams RH: Spermatid differentiation requires the assembly of
a cell polarity complex downstream of junctional adhesion
molecule-C. Nature. 431:320–324. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lamagna C, Hodivala-Dilke KM, Imhof BA and
Aurrand-Lions M: Antibody against junctional adhesion molecule-C
inhibits angiogenesis and tumor growth. Cancer Res. 65:5703–5710.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bradfield P, Scheiermann C, Nourshargh S,
Ody C, Luscinskas F, Rainger G, et al: JAM-C, a turnstile for
monocyte transendothelial migration in inflammation. Swiss Med
Wkly. 137:12s2007.
|
|
48
|
Vonlaufen A, Aurrand-Lions M, Pastor CM,
Lamagna C, Hadengue A, Imhof BA and Frossard JL: The role of
junctional adhesion molecule C (JAM-C) in acute pancreatitis. J
Pathol. 209:540–548. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ludwig RJ, Zollner TM, Santoso S, Hardt K,
Gille J, Baatz H, Johann PS, Pfeffer J, Radeke HH, Schön MP, et al:
Junctional adhesion molecules (JAM)-B and -C contribute to
leukocyte extravasation to the skin and mediate cutaneous
inflammation. J Invest Dermatol. 125:969–976. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hamazaki Y, Itoh M, Sasaki H, Furuse M and
Tsukita S: Multi-PDZ domain protein 1 (MUPP1) is concentrated at
tight junctions through its possible interaction with claudin-1 and
junctional adhesion molecule. J Biol Chem. 277:455–461. 2002.
View Article : Google Scholar
|
|
51
|
Martinez-Estrada OM, Villa A, Breviario F,
Orsenigo F, Dejana E and Bazzoni G: Association of junctional
adhesion molecule with calcium/calmodulin-dependent serine protein
kinase (CASK/LIN-2) in human epithelial caco-2 cells. J Biol Chem.
276:9291–9296. 2001. View Article : Google Scholar
|
|
52
|
Ebnet K, Schulz Cu, Meyer Zu, Brickwedde
MK, Pendl GG and Vestweber D: Junctional adhesion molecule
interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J
Biol Chem. 275:27979–27988. 2000.PubMed/NCBI
|
|
53
|
Bazzoni G, Martinez-Estrada OM, Orsenigo
F, Cordenonsi M, Citi S and Dejana E: Interaction of junctional
adhesion molecule with the tight junction components ZO-1,
cingulin, and occludin. J Biol Chem. 275:20520–20526. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ebnet K, Suzuki A, Horikoshi Y, Hirose T,
Meyer Zu, Brickwedde MK, Ohno S and Vestweber D: The cell polarity
protein ASIP/PAR-3 directly associates with junctional adhesion
molecule (JAM). EMBO J. 20:3738–3748. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer
F, Butz S, Zander K, Meyer zu Brickwedde MK, Suzuki A, Imhof BA and
Vestweber D: The junctional adhesion molecule (JAM) family members
JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: A
possible role for JAMs in endothelial cell polarity. J Cell Sci.
116:3879–3891. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Meguenani M, Miljkovic-Licina M, Fagiani
E, Ropraz P, Hammel P, Aurrand-Lions M, Adams RH, Christofori G,
Imhof BA and Garrido-Urbani S: Junctional adhesion molecule B
interferes with angiogenic VEGF/VEGFR2 signaling. FASEB J.
29:3411–3425. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hajjari M, Behmanesh M, Sadeghizadeh M and
Zeinoddini M: Junctional adhesion molecules 2 and 3 may potentially
be involved in progression of gastric adenocarcinoma tumors. Med
Oncol. 30:3802013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang J, Huang JY, Chen YN, Yuan F, Zhang
H, Yan FH, Wang MJ, Wang G, Su M, Lu G, et al: Whole genome and
transcriptome sequencing of matched primary and peritoneal
metastatic gastric carcinoma. Sci Rep. 5:137502015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang JY, Xu YY, Sun Z, Wang ZN, Zhu Z,
Song YX, Luo Y, Zhang X and Xu HM: Low junctional adhesion molecule
A expression correlates with poor prognosis in gastric cancer. J
Surg Res. 192:494–502. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kok-Sin T, Mokhtar NM, Ali Hassan NZ,
Sagap I, Mohamed Rose I, Harun R and Jamal R: Identification of
diagnostic markers in colorectal cancer via integrative epigenomics
and genomics data. Oncol Rep. 34:22–32. 2015.PubMed/NCBI
|
|
61
|
Oster B, Thorsen K, Lamy P, Wojdacz TK,
Hansen LL, Birkenkamp-Demtröder K, Sørensen KD, Laurberg S, Orntoft
TF and Andersen CL: Identification and validation of highly
frequent CpG island hypermethylation in colorectal adenomas and
carcinomas. Int J Cancer. 129:2855–2866. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bujko M, Kober P, Mikula M, Ligaj M,
Ostrowski J and Siedlecki JA: Expression changes of cell-cell
adhesion-related genes in colorectal tumors. Oncol Lett.
9:2463–2470. 2015.PubMed/NCBI
|
|
63
|
Tenan M, Aurrand-Lions M, Widmer V,
Alimenti A, Burkhardt K, Lazeyras F, Belkouch MC, Hammel P, Walker
PR, Duchosal MA, et al: Cooperative expression of junctional
adhesion molecule-C and -B supports growth and invasion of glioma.
Glia. 58:524–537. 2010.
|
|
64
|
Qi LF, Liu J, Zhu HY, Li ZQ, Lu K, Li T
and Shi D: Inhibition of glioma proliferation and migration by
magnetic nanoparticle mediated JAM-2 silencing. J Mater Chem B
Mater Biol Med. 2:7168–7175. 2014. View Article : Google Scholar
|
|
65
|
Qi LF, Shao WJ and Shi DL: JAM-2 siRNA
intracellular delivery and real-time imaging by proton-sponge
coated quantum dots. J Mater Chem B Mater Biol Med. 1:654–660.
2013. View Article : Google Scholar
|
|
66
|
Arcangeli ML, Frontera V, Bardin F,
Thomassin J, Chetaille B, Adams S, Adams RH and Aurrand-Lions M:
The junctional adhesion molecule-B regulates JAM-C-dependent
melanoma cell metastasis. FEBS Lett. 586:4046–4051. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li X, Wu Z, Mei Q, Li X, Guo M, Fu X and
Han W: Long non-coding RNA HOTAIR, a driver of malignancy, predicts
negative prognosis and exhibits oncogenic activity in oesophageal
squamous cell carcinoma. Br J Cancer. 109:2266–2278. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xu CQ, Zhu ST, Wang M, Guo SL, Sun XJ,
Cheng R, Xing J, Wang WH, Shao LL and Zhang ST: Pathway analysis of
differentially expressed genes in human esophageal squamous cell
carcinoma. Eur Rev Med Pharmacol Sci. 19:1652–1661. 2015.PubMed/NCBI
|
|
69
|
Coradini D, Fornili M, Ambrogi F, Boracchi
P and Biganzoli E: TP53 mutation, epithelial-mesenchymal
transition, and stemlike features in breast cancer subtypes. J
Biomed Biotechnol. 2012:2540852012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bhan A, Hussain I, Ansari KI, Kasiri S,
Bashyal A and Mandal SS: Antisense transcript long noncoding RNA
(lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol
Biol. 425:3707–3722. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
McSherry EA, McGee SF, Jirstrom K, Doyle
EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM and Gallagher WM:
JAM-A expression positively correlates with poor prognosis in
breast cancer patients. Int J Cancer. 125:1343–1351. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Singh B, Tschernig T, van Griensven M,
Fieguth A and Pabst R: Expression of vascular adhesion protein-1 in
normal and inflamed mice lungs and normal human lungs. Virchows
Arch. 442:491–495. 2003.PubMed/NCBI
|
|
73
|
Reynolds LE, Watson AR, Baker M, Jones TA,
D'Amico G, Robinson SD, Joffre C, Garrido-Urbani S,
Rodriguez-Manzaneque JC, Martino-Echarri E, et al: Tumour
angiogenesis is reduced in the Tc1 mouse model of Down's syndrome.
Nature. 465:813–817. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang M, Luo W, Huang B, Liu Z, Sun L,
Zhang Q, Qiu X, Xu K and Wang E: Overexpression of JAM-A in
non-small cell lung cancer correlates with tumor progression. PLoS
One. 8:e791732013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhuang Z, Jian P, Longjiang L, Bo H and
Wenlin X: Oral cancer cells with different potential of lymphatic
metastasis displayed distinct biologic behaviors and gene
expression profiles. J Oral Pathol Med. 39:168–175. 2010.
View Article : Google Scholar
|
|
76
|
Zhang Y, Zhang H, Huang Y, Sun R, Liu R
and Wei J: Human leukocyte antigen (HLA)-C polymorphisms are
associated with a decreased risk of rheumatoid arthritis. Mol Biol
Rep. 41:4103–4108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Harita Y, Miyauchi N, Karasawa T, Suzuki
K, Han GD, Koike H, Igarashi T, Shimizu F and Kawachi H: Altered
expression of junctional adhesion molecule 4 in injured podocytes.
Am J Physiol Renal Physiol. 290:F335–F344. 2006. View Article : Google Scholar
|