|
1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
|
2
|
Venook AP, Papandreou C, Furuse J and de
Guevara LL: The incidence and epidemiology of hepatocellular
carcinoma: A global and regional perspective. Oncologist. 15(Suppl
4): 5–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Llovet JM, Brú C and Bruix J: Prognosis of
hepatocellular carcinoma: The BCLC staging classification. Semin
Liver Dis. 19:329–338. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bruix J and Sherman M; American
Association for the Study of Liver Diseases: Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
El-Serag HB, Marrero JA, Rudolph L and
Reddy KR: Diagnosis and treatment of hepatocellular carcinoma.
Gastroenterology. 134:1752–1763. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Altekruse SF, McGlynn KA and Reichman ME:
Hepatocellular carcinoma incidence, mortality, and survival trends
in the United States from 1975 to 2005. J Clin Oncol. 27:1485–1491.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Llovet JM, Bustamante J, Castells A,
Vilana R, Ayuso MC, Sala M, Brú C, Rodés J and Bruix J: Natural
history of untreated nonsurgical hepatocellular carcinoma:
Rationale for the design and evaluation of therapeutic trials.
Hepatology. 29:62–67. 1999. View Article : Google Scholar
|
|
8
|
Singal A, Volk ML, Waljee A, Salgia R,
Higgins P, Rogers MA and Marrero JA: Meta-analysis: Surveillance
with ultrasound for early-stage hepatocellular carcinoma in
patients with cirrhosis. Aliment Pharmacol Ther. 30:37–47. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Singal AG, Conjeevaram HS, Volk ML, Fu S,
Fontana RJ, Askari F, Su GL, Lok AS and Marrero JA: Effectiveness
of hepatocellular carcinoma surveillance in patients with
cirrhosis. Cancer Epidemiol Biomarkers Prev. 21:793–799. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Marrero JA, Feng Z, Wang Y, Nguyen MH,
Befeler AS, Roberts LR, Reddy KR, Harnois D, Llovet JM, Normolle D,
et al: Alpha-fetoprotein, des-gamma carboxyprothrombin, and
lectin-bound alpha-fetoprotein in early hepatocellular carcinoma.
Gastroenterology. 137:110–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mao Y, Yang H, Xu H, Lu X, Sang X, Du S,
Zhao H, Chen W, Xu Y, Chi T, et al: Golgi protein 73 (GOLPH2) is a
valuable serum marker for hepatocellular carcinoma. Gut.
59:1687–1693. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Farinati F, Marino D, De Giorgio M, Baldan
A, Cantarini M, Cursaro C, Rapaccini G, Del Poggio P, Di Nolfo MA,
Benvegnù L, et al: Diagnostic and prognostic role of
alpha-fetoprotein in hepatocellular carcinoma: Both or neither? Am
J Gastroenterol. 101:524–532. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lok AS, Sterling RK, Everhart JE, Wright
EC, Hoefs JC, Di Bisceglie AM, Morgan TR, Kim HY, Lee WM, Bonkovsky
HL, et al HALT-C Trial Group: Des-gamma-carboxy prothrombin and
alpha-fetoprotein as biomarkers for the early detection of
hepatocellular carcinoma. Gastroenterology. 138:493–502. 2010.
View Article : Google Scholar
|
|
14
|
Saffroy R, Pham P, Reffas M, Takka M,
Lemoine A and Debuire B: New perspectives and strategy research
biomarkers for hepatocellular carcinoma. Clin Chem Lab Med.
45:1169–1179. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen DS, Sung JL, Sheu JC, Lai MY, How SW,
Hsu HC, Lee CS and Wei TC: Serum alpha-fetoprotein in the early
stage of human hepatocellular carcinoma. Gastroenterology.
86:1404–1409. 1984.PubMed/NCBI
|
|
16
|
Hu B, Tian X, Sun J and Meng X: Evaluation
of individual and combined applications of serum biomarkers for
diagnosis of hepatocellular carcinoma: A meta-analysis. Int J Mol
Sci. 14:23559–23580. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jia X, Liu J, Gao Y, Huang Y and Du Z:
Diagnosis accuracy of serum glypican-3 in patients with
hepatocellular carcinoma: A systematic review with meta-analysis.
Arch Med Res. 45:580–588. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ge T, Shen Q, Wang N, Zhang Y, Ge Z, Chu
W, Lv X, Zhao F, Zhao W, Fan J, et al: Diagnostic values of
alpha-fetoprotein, dickkopf-1, and osteopontin for hepatocellular
carcinoma. Med Oncol. 32:592015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Warnock DG and Peck CC: A roadmap for
biomarker qualification. Nat Biotechnol. 28:444–445. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sharma MC and Sharma M: The role of
annexin II in angiogenesis and tumor progression: A potential
therapeutic target. Curr Pharm Des. 13:3568–3575. 2007. View Article : Google Scholar
|
|
21
|
Emoto K, Sawada H, Yamada Y, Fujimoto H,
Takahama Y, Ueno M, Takayama T, Uchida H, Kamada K, Naito A, et al:
Annexin II overexpression is correlated with poor prognosis in
human gastric carcinoma. Anticancer Res. 21:1339–1345.
2001.PubMed/NCBI
|
|
22
|
Qi YJ, He QY, Ma YF, Du YW, Liu GC, Li YJ,
Tsao GS, Ngai SM and Chiu JF: Proteomic identification of malignant
transformation-related proteins in esophageal squamous cell
carcinoma. J Cell Biochem. 104:1625–1635. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alfonso P, Cañamero M, Fernández-Carbonié
F, Núñez A and Casal JI: Proteome analysis of membrane fractions in
colorectal carcinomas by using 2D-DIGE saturation labeling. J
Proteome Res. 7:4247–4255. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yao H, Zhang Z, Xiao Z, Chen Y, Li C,
Zhang P, Li M, Liu Y, Guan Y, Yu Y, et al: Identification of
metastasis associated proteins in human lung squamous carcinoma
using two-dimensional difference gel electrophoresis and laser
capture microdissection. Lung Cancer. 65:41–48. 2009. View Article : Google Scholar
|
|
25
|
Sharma MR, Koltowski L, Ownbey RT,
Tuszynski GP and Sharma MC: Angiogenesis-associated protein annexin
II in breast cancer: Selective expression in invasive breast cancer
and contribution to tumor invasion and progression. Exp Mol Pathol.
81:146–156. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhao P, Zhang W, Wang SJ, Yu XL, Tang J,
Huang W, Li Y, Cui HY, Guo YS, Tavernier J, et al: HAb18G/CD147
promotes cell motility by regulating annexin II-activated RhoA and
Rac1 signaling pathways in hepatocellular carcinoma cells.
Hepatology. 54:2012–2024. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lokman NA, Ween MP, Oehler MK and
Ricciardelli C: The role of annexin A2 in tumorigenesis and cancer
progression. Cancer Microenviron. 4:199–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yu GR, Kim SH, Park SH, Cui XD, Xu DY, Yu
HC, Cho BH, Yeom YI, Kim SS, Kim SB, et al: Identification of
molecular markers for the oncogenic differentiation of
hepatocellular carcinoma. Exp Mol Med. 39:641–652. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ji NY, Park MY, Kang YH, Lee CI, Kim DG,
Yeom YI, Jang YJ, Myung PK, Kim JW, Lee HG, et al: Evaluation of
Annexin II as a potential serum marker for hepatocellular carcinoma
using a developed sandwich ELISA method. Int J Mol Med. 24:765–771.
2009.PubMed/NCBI
|
|
30
|
Sun Y, Gao G, Cai J, Wang Y, Qu X, He L,
Liu F, Zhang Y, Lin K, Ma S, et al: Annexin A2 is a discriminative
serological candidate in early hepatocellular carcinoma.
Carcinogenesis. 34:595–604. 2013. View Article : Google Scholar :
|
|
31
|
Axelrod H and Pienta KJ: Axl as a mediator
of cellular growth and survival. Oncotarget. 5:8818–8852. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Paccez JD, Vogelsang M, Parker MI and
Zerbini LF: The receptor tyrosine kinase Axl in cancer: Biological
functions and therapeutic implications. Int J Cancer.
134:1024–1033. 2014. View Article : Google Scholar
|
|
33
|
Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH,
Lui WY, Hu CP, Chang C, Chou CK and Tsai SF: Parallel hybridization
analysis of multiple protein kinase genes: Identification of gene
expression patterns characteristic of human hepatocellular
carcinoma. Genomics. 50:331–340. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST,
Chen J, Poon RT, Zender L, Lowe SW, Hong W, et al: AXL receptor
kinase is a mediator of YAP-dependent oncogenic functions in
hepatocellular carcinoma. Oncogene. 30:1229–1240. 2011. View Article : Google Scholar
|
|
35
|
Reichl P, Dengler M, van Zijl F, Huber H,
Führlinger G, Reichel C, Sieghart W, Peck-Radosavljevic M,
Grubinger M and Mikulits W: Axl activates autocrine transforming
growth factor-β signaling in hepatocellular carcinoma. Hepatology.
61:930–941. 2015. View Article : Google Scholar :
|
|
36
|
Ekman C, Stenhoff J and Dahlbäck B: Gas6
is complexed to the soluble tyrosine kinase receptor Axl in human
blood. J Thromb Haemost. 8:838–844. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Reichl P, Fang M, Starlinger P, Staufer K,
Nenutil R, Muller P, Greplova K, Valik D, Dooley S, Brostjan C, et
al: Multicenter analysis of soluble Axl reveals diagnostic value
for very early stage hepatocellular carcinoma. Int J Cancer.
137:385–394. 2015. View Article : Google Scholar :
|
|
38
|
Laurent TC, Moore EC and Reichard P:
Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and
characterization of thioredoxin, the hydrogen donor from
Escherichia Coli B. J Biol Chem. 239:3436–3444. 1964.PubMed/NCBI
|
|
39
|
Nordberg J and Arnér ES: Reactive oxygen
species, antioxidants, and the mammalian thioredoxin system. Free
Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mahmood DF, Abderrazak A, El Hadri K,
Simmet T and Rouis M: The thioredoxin system as a therapeutic
target in human health and disease. Antioxid Redox Signal.
19:1266–1303. 2013. View Article : Google Scholar
|
|
41
|
Kaimul AM, Nakamura H, Masutani H and
Yodoi J: Thioredoxin and thioredoxin-binding protein-2 in cancer
and metabolic syndrome. Free Radic Biol Med. 43:861–868. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Arnér ES and Holmgren A: The thioredoxin
system in cancer. Semin Cancer Biol. 16:420–426. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mollbrink A, Jawad R, Vlamis-Gardikas A,
Edenvik P, Isaksson B, Danielsson O, Stål P and Fernandes AP:
Expression of thioredoxins and glutaredoxins in human
hepatocellular carcinoma: Correlation to cell proliferation, tumor
size and metabolic syndrome. Int J Immunopathol Pharmacol.
27:169–183. 2014.PubMed/NCBI
|
|
44
|
Cunnea P, Fernandes AP, Capitanio A, Eken
S, Spyrou G and Björnstedt M: Increased expression of specific
thioredoxin family proteins; a pilot immunohistochemical study on
human hepatocellular carcinoma. Int J Immunopathol Pharmacol.
20:17–24. 2007.PubMed/NCBI
|
|
45
|
Li J, Cheng ZJ, Liu Y, Yan ZL, Wang K, Wu
D, Wan XY, Xia Y, Lau WY, Wu MC, et al: Serum thioredoxin is a
diagnostic marker for hepatocellular carcinoma. Oncotarget.
6:9551–9563. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yurchenko V, Constant S and Bukrinsky M:
Dealing with the family: CD147 interactions with cyclophilins.
Immunology. 117:301–309. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Weidle UH, Scheuer W, Eggle D, Klostermann
S and Stockinger H: Cancer-related issues of CD147. Cancer Genomics
Proteomics. 7:157–169. 2010.PubMed/NCBI
|
|
48
|
Xu J, Xu HY, Zhang Q, Song F, Jiang JL,
Yang XM, Mi L, Wen N, Tian R, Wang L, et al: HAb18G/CD147 functions
in invasion and metastasis of hepatocellular carcinoma. Mol Cancer
Res. 5:605–614. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li Y, Wu J, Song F, Tang J, Wang SJ, Yu
XL, Chen ZN and Jiang JL: Extracellular membrane-proximal domain of
HAb18G/CD147 binds to metal ion-dependent adhesion site (MIDAS)
motif of integrin β1 to modulate malignant properties of hepatoma
cells. J Biol Chem. 287:4759–4772. 2012. View Article : Google Scholar
|
|
50
|
Wu J, Hao ZW, Zhao YX, Yang XM, Tang H,
Zhang X, Song F, Sun XX, Wang B, Nan G, et al: Full-length soluble
CD147 promotes MMP-2 expression and is a potential serological
marker in detection of hepatocellular carcinoma. J Transl Med.
12:1902014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bowen MA, Patel DD, Li X, Modrell B,
Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke
U, et al: Cloning, mapping, and characterization of activated
leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med.
181:2213–2220. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Weidle UH, Eggle D, Klostermann S and
Swart GW: ALCAM/CD166: Cancer-related issues. Cancer Genomics
Proteomics. 7:231–243. 2010.PubMed/NCBI
|
|
53
|
Ma L, Wang J, Lin J, Pan Q, Yu Y and Sun
F: Cluster of differentiation 166 (CD166) regulated by
phosphatidylinositide 3-kinase (PI3K)/AKT signaling to exert its
anti-apoptotic role via yes-associated protein (YAP) in liver
cancer. J Biol Chem. 289:6921–6933. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ma L, Lin J, Qiao Y, Weng W, Liu W, Wang J
and Sun F: Serum CD166: A novel hepatocellular carcinoma tumor
marker. Clin Chim Acta. 441:156–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nedvídková J, Nĕmec J, Stolba P,
Vavrejnová V and Bednár J: Epidermal growth factor (EGF) in serum
of patients with differentiated carcinoma of thyroids. Neoplasma.
39:11–14. 1992.PubMed/NCBI
|
|
56
|
Meggiato T, Plebani M, Basso D, Panozzo MP
and Del Favero G: Serum growth factors in patients with pancreatic
cancer. Tumour Biol. 20:65–71. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Konturek A, Barczyński M, Cichoń S,
Pituch-Noworolska A, Jonkisz J and Cichoń W: Significance of
vascular endothelial growth factor and epidermal growth factor in
development of papillary thyroid cancer. Langenbecks Arch Surg.
390:216–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shehata F, Abdel Monem N, Sakr M, Kasem S
and Balbaa M: Epidermal growth factor, its receptor and
transforming growth factor-β1 in the diagnosis of HCV-induced
hepatocellular carcinoma. Med Oncol. 30:6732013. View Article : Google Scholar
|
|
59
|
Bootcov MR, Bauskin AR, Valenzuela SM,
Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor
K, et al: MIC-1, a novel macrophage inhibitory cytokine, is a
divergent member of the TGF-beta superfamily. Proc Natl Acad Sci
USA. 94:11514–11519. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fairlie WD, Zhang H, Brown PK, Russell PK,
Bauskin AR and Breit SN: Expression of a TGF-beta superfamily
protein, macrophage inhibitory cytokine-1, in the yeast Pichia
pastoris. Gene. 254:67–76. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Corre J, Hébraud B and Bourin P: Concise
review: growth differentiation factor 15 in pathology: a clinical
role? Stem Cells Transl Med. 2:946–952. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Eling TE, Baek SJ, Shim M and Lee CH:
NSAID activated gene (NAG-1), a modulator of tumorigenesis. J
Biochem Mol Biol. 39:649–655. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu X, Chi X, Gong Q, Gao L, Niu Y, Chi X,
Cheng M, Si Y, Wang M, Zhong J, et al: Association of serum level
of growth differentiation factor 15 with liver cirrhosis and
hepatocellular carcinoma. PLoS One. 10:e01275182015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Satoh T and Hosokawa M: Structure,
function and regulation of carboxylesterases. Chem Biol Interact.
162:195–211. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Na K, Jeong SK, Lee MJ, Cho SY, Kim SA,
Lee MJ, Song SY, Kim H, Kim KS, Lee HW, et al: Human liver
carboxylesterase 1 outperforms alpha-fetoprotein as biomarker to
discriminate hepatocellular carcinoma from other liver diseases in
Korean patients. Int J Cancer. 133:408–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fell VL and Schild-Poulter C: The Ku
heterodimer: Function in DNA repair and beyond. Mutat Res Rev Mutat
Res. 763:15–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tong WM, Cortes U, Hande MP, Ohgaki H,
Cavalli LR, Lansdorp PM, Haddad BR and Wang ZQ: Synergistic role of
Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal
aberrations and liver cancer formation. Cancer Res. 62:6990–6996.
2002.PubMed/NCBI
|
|
68
|
Nomura F, Sogawa K, Noda K, Seimiya M,
Matsushita K, Miura T, Tomonaga T, Yoshitomi H, Imazeki F, Takizawa
H, et al: Serum anti-Ku86 is a potential biomarker for early
detection of hepatitis C virus-related hepatocellular carcinoma.
Biochem Biophys Res Commun. 421:837–843. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lim JW, Kim H and Kim KH: Expression of
Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is
related to proliferation of human gastric cancer cells. J Biol
Chem. 277:46093–46100. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xu Y, Liu AJ, Gao YX, Hu MG, Zhao GD, Zhao
ZM and Liu R: Expression of Ku86 and presence of Ku86 antibody as
biomarkers of hepatitis B virus related hepatocellular carcinoma.
Dig Dis Sci. 59:614–622. 2014. View Article : Google Scholar
|
|
71
|
Morén A, Olofsson A, Stenman G, Sahlin P,
Kanzaki T, Claesson-Welsh L, ten Dijke P, Miyazono K and Heldin CH:
Identification and characterization of LTBP-2, a novel latent
transforming growth factor-beta-binding protein. J Biol Chem.
269:32469–32478. 1994.PubMed/NCBI
|
|
72
|
Saharinen J and Keski-Oja J: Specific
sequence motif of 8-Cys repeats of TGF-beta binding proteins,
LTBPs, creates a hydrophobic interaction surface for binding of
small latent TGF-beta. Mol Biol Cell. 11:2691–2704. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chan SH, Yee Ko JM, Chan KW, Chan YP, Tao
Q, Hyytiainen M, Keski-Oja J, Law S, Srivastava G, Tang J, et al:
The ECM protein LTBP-2 is a suppressor of esophageal squamous cell
carcinoma tumor formation but higher tumor expression associates
with poor patient outcome. Int J Cancer. 129:565–573. 2011.
View Article : Google Scholar
|
|
74
|
Vehviläinen P, Hyytiäinen M and Keski-Oja
J: Latent transforming growth factor-beta-binding protein 2 is an
adhesion protein for melanoma cells. J Biol Chem. 278:24705–24713.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Turtoi A, Musmeci D, Wang Y, Dumont B,
Somja J, Bevilacqua G, De Pauw E, Delvenne P and Castronovo V:
Identification of novel accessible proteins bearing diagnostic and
therapeutic potential in human pancreatic ductal adenocarcinoma. J
Proteome Res. 10:4302–4313. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
da Costa AN, Plymoth A, Santos-Silva D,
Ortiz-Cuaran S, Camey S, Guilloreau P, Sangrajrang S, Khuhaprema T,
Mendy M, Lesi OA, et al: Osteopontin and latent-TGF β
binding-protein 2 as potential diagnostic markers for HBV-related
hepatocellular carcinoma. Int J Cancer. 136:172–181. 2015.
View Article : Google Scholar
|
|
77
|
Lindner K, Gregán J, Montgomery S and
Kearsey SE: Essential role of MCM proteins in premeiotic DNA
replication. Mol Biol Cell. 13:435–444. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Blow JJ and Hodgson B: Replication
licensing-defining the proliferative state? Trends Cell Biol.
12:72–78. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Davies RJ, Freeman A, Morris LS, Bingham
S, Dilworth S, Scott I, Laskey RA, Miller R and Coleman N: Analysis
of minichromosome maintenance proteins as a novel method for
detection of colorectal cancer in stool. Lancet. 359:1917–1919.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ayaru L, Stoeber K, Webster GJ, Hatfield
AR, Wollenschlaeger A, Okoturo O, Rashid M, Williams G and Pereira
SP: Diagnosis of pancreaticobiliary malignancy by detection of
minichromosome maintenance protein 5 in bile aspirates. Br J
Cancer. 98:1548–1554. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gauchotte G, Vigouroux C, Rech F,
Battaglia-Hsu SF, Soudant M, Pinelli C, Civit T, Taillandier L,
Vignaud JM and Bressenot A: Expression of minichromosome
maintenance MCM6 protein in meningiomas is strongly correlated with
histologic grade and clinical outcome. Am J Surg Pathol.
36:283–291. 2012. View Article : Google Scholar
|
|
82
|
Zhou YM, Zhang XF, Cao L, Li B, Sui CJ, Li
YM and Yin ZF: MCM7 expression predicts post-operative prognosis
for hepatocellular carcinoma. Liver Int. 32:1505–1509. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zheng T, Chen M, Han S, Zhang L, Bai Y,
Fang X, Ding SZ and Yang Y: Plasma minichromosome maintenance
complex component 6 is a novel biomarker for hepatocellular
carcinoma patients. Hepatol Res. 44:1347–1356. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Deshmane SL, Kremlev S, Amini S and Sawaya
BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J
Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sato K, Kuratsu J, Takeshima H, Yoshimura
T and Ushio Y: Expression of monocyte chemoattractant protein-1 in
meningioma. J Neurosurg. 82:874–878. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ohta M, Kitadai Y, Tanaka S, Yoshihara M,
Yasui W, Mukaida N, Haruma K and Chayama K: Monocyte
chemoattractant protein-1 expression correlates with macrophage
infiltration and tumor vascularity in human gastric carcinomas. Int
J Oncol. 22:773–778. 2003.PubMed/NCBI
|
|
87
|
Valković T, Dobrila F, Melato M, Sasso F,
Rizzardi C and Jonjić N: Correlation between vascular endothelial
growth factor, angiogenesis, and tumor-associated macrophages in
invasive ductal breast carcinoma. Virchows Arch. 440:583–588. 2002.
View Article : Google Scholar
|
|
88
|
Dagouassat M, Suffee N, Hlawaty H, Haddad
O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO,
Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2
secreted by hepatic myofibroblasts promotes migration and invasion
of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010.
|
|
89
|
Marra F, DeFranco R, Grappone C, Milani S,
Pastacaldi S, Pinzani M, Romanelli RG, Laffi G and Gentilini P:
Increased expression of monocyte chemotactic protein-1 during
active hepatic fibrogenesis: Correlation with monocyte
infiltration. Am J Pathol. 152:423–430. 1998.PubMed/NCBI
|
|
90
|
Wang WW, Ang SF, Kumar R, Heah C, Utama A,
Tania NP, Li H, Tan SH, Poo D, Choo SP, et al: Identification of
serum monocyte chemoattractant protein-1 and prolactin as potential
tumor markers in hepatocellular carcinoma. PLoS One. 8:e689042013.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dietz KJ, Horling F, König J and Baier M:
The function of the chloroplast 2-cysteine peroxiredoxin in
peroxide detoxification and its regulation. J Exp Bot.
53:1321–1329. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh
KH, Kim YS, Woo HA, Rhee SG, Lee KJ, et al: Peroxiredoxin 3 is a
key molecule regulating adipocyte oxidative stress, mitochondrial
biogenesis, and adipokine expression. Antioxid Redox Signal.
16:229–243. 2012. View Article : Google Scholar :
|
|
93
|
Qiao B, Wang J, Xie J, Niu Y, Ye S, Wan Q
and Ye Q: Detection and identification of peroxiredoxin 3 as a
biomarker in hepatocellular carcinoma by a proteomic approach. Int
J Mol Med. 29:832–840. 2012.PubMed/NCBI
|
|
94
|
Shi L, Wu LL, Yang JR, Chen XF, Zhang Y,
Chen ZQ, Liu CL, Chi SY, Zheng JY, Huang HX, et al: Serum
peroxiredoxin3 is a useful biomarker for early diagnosis and
assessment of prognosis of hepatocellular carcinoma in Chinese
patients. Asian Pac J Cancer Prev. 15:2979–2986. 2014. View Article : Google Scholar
|
|
95
|
Horwitz A, Duggan K, Buck C, Beckerle MC
and Burridge K: Interaction of plasma membrane fibronectin receptor
with talin-a transmembrane linkage. Nature. 320:531–533. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tadokoro S, Shattil SJ, Eto K, Tai V,
Liddington RC, de Pereda JM, Ginsberg MH and Calderwood DA: Talin
binding to integrin beta tails: A final common step in integrin
activation. Science. 302:103–106. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Slater M, Cooper M and Murphy CR: The
cytoskeletal proteins alpha-actinin, Ezrin, and talin are
de-expressed in endometriosis and endometrioid carcinoma compared
with normal uterine epithelium. Appl Immunohistochem Mol Morphol.
15:170–174. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Sakamoto S, McCann RO, Dhir R and
Kyprianou N: Talin1 promotes tumor invasion and metastasis via
focal adhesion signaling and anoikis resistance. Cancer Res.
70:1885–1895. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Youns MM, Abdel Wahab AH, Hassan ZA and
Attia MS: Serum talin-1 is a potential novel biomarker for
diagnosis of hepatocellular carcinoma in Egyptian patients. Asian
Pac J Cancer Prev. 14:3819–3823. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kohno K, Izumi H, Uchiumi T, Ashizuka M
and Kuwano M: The pleiotropic functions of the Y-box-binding
protein, YB-1. BioEssays. 25:691–698. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi
T, Iwamoto Y, Toi M, Fujii T, Yamana H, Kinoshita H, et al: The
role of nuclear Y-box binding protein 1 as a global marker in drug
resistance. Mol Cancer Ther. 3:1485–1492. 2004.PubMed/NCBI
|
|
102
|
Frye BC, Halfter S, Djudjaj S, Muehlenberg
P, Weber S, Raffetseder U, En-Nia A, Knott H, Baron JM, Dooley S,
et al: Y-box protein-1 is actively secreted through a non-classical
pathway and acts as an extracellular mitogen. EMBO Rep. 10:783–789.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Pu L, Jing S, Bianqin G, Ping L, Qindong
L, Chenggui L, Feng C, Wenbin K, Qin W, Jinyu D, et al: Development
of a chemiluminescence immunoassay for serum YB-1 and its clinical
application as a potential diagnostic marker for hepatocellular
carcinoma. Hepat Mon. 13:e89182013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Comunale MA, Wang M, Hafner J, Krakover J,
Rodemich L, Kopenhaver B, Long RE, Junaidi O, Bisceglie AM, Block
TM, et al: Identification and development of fucosylated
glycoproteins as biomarkers of primary hepatocellular carcinoma. J
Proteome Res. 8:595–602. 2009. View Article : Google Scholar
|
|
105
|
Na K, Lee EY, Lee HJ, Kim KY, Lee H, Jeong
SK, Jeong AS, Cho SY, Kim SA, Song SY, et al: Human plasma
carboxylesterase 1, a novel serologic biomarker candidate for
hepatocellular carcinoma. Proteomics. 9:3989–3999. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Qi YJ, Ward DG, Pang C, Wang QM, Wei W, Ma
J, Zhang J, Lou Q, Shimwell NJ, Martin A, et al: Proteomic
profiling of N-linked glycoproteins identifies ConA-binding
procathepsin D as a novel serum biomarker for hepatocellular
carcinoma. Proteomics. 14:186–195. 2014. View Article : Google Scholar
|
|
107
|
Costa LG, Cole TB, Vitalone A and Furlong
CE: Measurement of paraoxonase (PON1) status as a potential
biomarker of susceptibility to organophosphate toxicity. Clin Chim
Acta. 352:37–47. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Goswami B, Tayal D, Gupta N and Mallika V:
Paraoxonase: A multifaceted biomolecule. Clin Chim Acta. 410:1–12.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Huang C, Wang Y, Liu S, Ding G, Liu W,
Zhou J, Kuang M, Ji Y, Kondo T and Fan J: Quantitative proteomic
analysis identified paraoxonase 1 as a novel serum biomarker for
microvascular invasion in hepatocellular carcinoma. J Proteome Res.
12:1838–1846. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang S, Jiang K, Zhang Q, Guo K and Liu
Y: Serum fucosylated paraoxonase 1 as a potential glycobiomarker
for clinical diagnosis of early hepatocellular carcinoma using
ELISA Index. Glycoconj J. 32:119–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chisaka O and Capecchi MR: Regionally
restricted developmental defects resulting from targeted disruption
of the mouse homeobox gene hox-1.5. Nature. 350:473–479. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Argiropoulos B and Humphries RK: Hox genes
in hematopoiesis and leukemogenesis. Oncogene. 26:6766–6776. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
So CW, Karsunky H, Wong P, Weissman IL and
Cleary ML: Leukemic transformation of hematopoietic progenitors by
MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 103:3192–3199.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Bhatlekar S, Fields JZ and Boman BM: HOX
genes and their role in the development of human cancers. J Mol Med
Berl. 92:811–823. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kuo CC, Lin CY, Shih YL, Hsieh CB, Lin PY,
Guan SB, Hsieh MS, Lai HC, Chen CJ and Lin YW: Frequent methylation
of HOXA9 gene in tumor tissues and plasma samples from human
hepatocellular carcinomas. Clin Chem Lab Med. 52:1235–1245. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li J, Poi MJ and Tsai MD: Regulatory
mechanisms of tumor suppressor P16INK4A and their
relevance to cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zang JJ, Xie F, Xu JF, Qin YY, Shen RX,
Yang JM and He J: P16 gene hypermethylation and hepatocellular
carcinoma: A systematic review and meta-analysis. World J
Gastroenterol. 17:3043–3048. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Huang G, Krocker JD, Kirk JL, Merwat SN,
Ju H, Soloway RD, Wieck LR, Li A, Okorodudu AO, Petersen JR, et al:
Evaluation of INK4A promoter methylation using pyrosequencing and
circulating cell-free DNA from patients with hepatocellular
carcinoma. Clin Chem Lab Med. 52:899–909. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Berindan-Neagoe I, Monroig PC, Pasculli B
and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis
and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Giordano S and Columbano A: MicroRNAs: New
tools for diagnosis, prognosis, and therapy in hepatocellular
carcinoma? Hepatology. 57:840–847. 2013. View Article : Google Scholar
|
|
121
|
Tutar L, Tutar E and Tutar Y: MicroRNAs
and cancer; an overview. Curr Pharm Biotechnol. 15:430–437. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Anwar SL and Lehmann U: MicroRNAs:
Emerging novel clinical biomarkers for hepatocellular carcinomas. J
Clin Med. 4:1631–1650. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Qiu G, Lin Y, Zhang H and Wu D: miR-139-5p
inhibits epithelial-mesenchymal transition, migration and invasion
of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2.
Biochem Biophys Res Commun. 463:315–321. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Wong CC, Wong CM, Tung EK, Au SL, Lee JM,
Poon RT, Man K and Ng IO: The microRNA miR-139 suppresses
metastasis and progression of hepatocellular carcinoma by
downregulating Rho-kinase 2. Gastroenterology. 140:322–331. 2011.
View Article : Google Scholar
|
|
125
|
Gu W, Li X and Wang J: miR-139 regulates
the proliferation and invasion of hepatocellular carcinoma through
the WNT/TCF-4 pathway. Oncol Rep. 31:397–404. 2014.
|
|
126
|
Li T, Yin J, Yuan L, Wang S, Yang L, Du X
and Lu J: Downregulation of microRNA-139 is associated with
hepatocellular carcinoma risk and short-term survival. Oncol Rep.
31:1699–1706. 2014.PubMed/NCBI
|
|
127
|
Xu S, Witmer PD, Lumayag S, Kovacs B and
Valle D: MicroRNA (miRNA) transcriptome of mouse retina and
identification of a sensory organ-specific miRNA cluster. J Biol
Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wei Q, Lei R and Hu G: Roles of miR-182 in
sensory organ development and cancer. Thorac Cancer. 6:2–9. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang
Q, Cheng P, Tang ZH and Huang F: Meta-analysis of microRNA-183
family expression in human cancer studies comparing cancer tissues
with noncancerous tissues. Gene. 527:26–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Qin J, Luo M, Qian H and Chen W:
Upregulated miR-182 increases drug resistance in cisplatin-treated
HCC cell by regulating TP53INP1. Gene. 538:342–347. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang TH, Yeh CT, Ho JY, Ng KF and Chen TC:
OncomiR miR-96 and miR-182 promote cell proliferation and invasion
through targeting ephrinA5 in hepatocellular carcinoma. Mol
Carcinog. 55:366–375. 2016. View Article : Google Scholar
|
|
132
|
Chen L, Chu F, Cao Y, Shao J and Wang F:
Serum miR-182 and miR-331-3p as diagnostic and prognostic markers
in patients with hepatocellular carcinoma. Tumour Biol.
36:7439–7447. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zanette DL, Rivadavia F, Molfetta GA,
Barbuzano FG, Proto-Siqueira R, Silva-Jr WA, Falcão RP and Zago MA:
miRNA expression profiles in chronic lymphocytic and acute
lymphocytic leukemia. Braz J Med Biol Res. 40:1435–1440. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Epis MR, Giles KM, Barker A, Kendrick TS
and Leedman PJ: miR-331-3p regulates ERBB-2 expression and androgen
receptor signaling in prostate cancer. J Biol Chem.
284:24696–24704. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Guo X, Guo L, Ji J, Zhang J, Zhang J, Chen
X, Cai Q, Li J, Gu Q, Liu B, et al: miRNA-331-3p directly targets
E2F1 and induces growth arrest in human gastric cancer. Biochem
Biophys Res Commun. 398:1–6. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Nymark P, Guled M, Borze I, Faisal A,
Lahti L, Salmenkivi K, Kettunen E, Anttila S and Knuutila S:
Integrative analysis of microRNA, mRNA and aCGH data reveals
asbestos- and histology-related changes in lung cancer. Genes
Chromosomes Cancer. 50:585–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Epis MR, Giles KM, Candy PA, Webster RJ
and Leedman PJ: miR-331-3p regulates expression of neuropilin-2 in
glioblastoma. J Neurooncol. 116:67–75. 2014. View Article : Google Scholar :
|
|
138
|
Leivonen SK, Sahlberg KK, Mäkelä R, Due
EU, Kallioniemi O, Børresen-Dale AL and Perälä M: High-throughput
screens identify microRNAs essential for HER2 positive breast
cancer cell growth. Mol Oncol. 8:93–104. 2014. View Article : Google Scholar
|
|
139
|
Sukata T, Sumida K, Kushida M, Ogata K,
Miyata K, Yabushita S and Uwagawa S: Circulating microRNAs,
possible indicators of progress of rat hepatocarcinogenesis from
early stages. Toxicol Lett. 200:46–52. 2011. View Article : Google Scholar
|
|
140
|
Chang RM, Yang H, Fang F, Xu JF and Yang
LY: MicroRNA-331-3p promotes proliferation and metastasis of
hepatocellular carcinoma by targeting PH domain and leucine-rich
repeat protein phosphatase. Hepatology. 60:1251–1263. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Marchini S, Cavalieri D, Fruscio R, Calura
E, Garavaglia D, Fuso Nerini I, Mangioni C, Cattoretti G, Clivio L,
Beltrame L, et al: Association between miR-200c and the survival of
patients with stage I epithelial ovarian cancer: A retrospective
study of two independent tumour tissue collections. Lancet Oncol.
12:273–285. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Bockmeyer CL, Christgen M, Müller M,
Fischer S, Ahrens P, Länger F, Kreipe H and Lehmann U: MicroRNA
profiles of healthy basal and luminal mammary epithelial cells are
distinct and reflected in different breast cancer subtypes. Breast
Cancer Res Treat. 130:735–745. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wan D, He S, Xie B, Xu G, Gu W, Shen C, Hu
Y, Wang X, Zhi Q and Wang L: Aberrant expression of miR-199a-3p and
its clinical significance in colorectal cancers. Med Oncol.
30:3782013. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Tian R, Xie X, Han J, Luo C, Yong B, Peng
H, Shen J and Peng T: miR-199a-3p negatively regulates the
progression of osteosarcoma through targeting AXL. Am J Cancer Res.
4:738–750. 2014.PubMed/NCBI
|
|
145
|
Zhao X, He L, Li T, Lu Y, Miao Y, Liang S,
Guo H, Bai M, Xie H, Luo G, et al: SRF expedites metastasis and
modulates the epithelial to mesenchymal transition by regulating
miR-199a-5p expression in human gastric cancer. Cell Death Differ.
21:1900–1913. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Feber A, Xi L, Pennathur A, Gooding WE,
Bandla S, Wu M, Luketich JD, Godfrey TE and Litle VR: MicroRNA
prognostic signature for nodal metastases and survival in
esophageal adenocarcinoma. Ann Thorac Surg. 91:1523–1530. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Nonaka R, Nishimura J, Kagawa Y, Osawa H,
Hasegawa J, Murata K, Okamura S, Ota H, Uemura M, Hata T, et al:
Circulating miR-199a-3p as a novel serum biomarker for colorectal
cancer. Oncol Rep. 32:2354–2358. 2014.PubMed/NCBI
|
|
148
|
Fornari F, Milazzo M, Chieco P, Negrini M,
Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L and Gramantieri
L: MiR-199a-3p regulates mTOR and c-Met to influence the
doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res.
70:5184–5193. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Henry JC, Park JK, Jiang J, Kim JH,
Nagorney DM, Roberts LR, Banerjee S and Schmittgen TD: miR-199a-3p
targets CD44 and reduces proliferation of CD44 positive
hepatocellular carcinoma cell lines. Biochem Biophys Res Commun.
403:120–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Yin J, Hou P, Wu Z, Wang T and Nie Y:
Circulating miR-375 and miR-199a-3p as potential biomarkers for the
diagnosis of hepatocellular carcinoma. Tumour Biol. 36:4501–4507.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Nault JC: Pathogenesis of hepatocellular
carcinoma according to aetiology. Best Pract Res Clin
Gastroenterol. 28:937–947. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: Epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Forner A, Gilabert M, Bruix J and Raoul
JL: Treatment of intermediate-stage hepatocellular carcinoma. Nat
Rev Clin Oncol. 11:525–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Ryu M, Shimamura Y, Kinoshita T, Konishi
M, Kawano N, Iwasaki M, Furuse J, Yoshino M, Moriyama N and Sugita
M: Therapeutic results of resection, transcatheter arterial
emboli-zation and percutaneous transhepatic ethanol injection in
3225 patients with hepatocellular carcinoma: A retrospective
multi-center study. Jpn J Clin Oncol. 27:251–257. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Livraghi T, Meloni F, Di Stasi M, Rolle E,
Solbiati L, Tinelli C and Rossi S: Sustained complete response and
complications rates after radiofrequency ablation of very early
hepatocellular carcinoma in cirrhosis: Is resection still the
treatment of choice? Hepatology. 47:82–89. 2008. View Article : Google Scholar
|
|
156
|
Wang K, Yuan Y, Cho JH, McClarty S, Baxter
D and Galas DJ: Comparing the MicroRNA spectrum between serum and
plasma. PLoS One. 7:e415612012. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Vickers KC, Palmisano BT, Shoucri BM,
Shamburek RD and Remaley AT: MicroRNAs are transported in plasma
and delivered to recipient cells by high-density lipoproteins. Nat
Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Moldovan L, Batte KE, Trgovcich J, Wisler
J, Marsh CB and Piper M: Methodological challenges in utilizing
miRNAs as circulating biomarkers. J Cell Mol Med. 18:371–390. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Peltier HJ and Latham GJ: Normalization of
microRNA expression levels in quantitative RT-PCR assays:
Identification of suitable reference RNA targets in normal and
cancerous human solid tissues. RNA. 14:844–852. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Qu Z, Jiang C, Wu J and Ding Y: Exosomes
as potent regulators of HCC malignancy and potential bio-tools in
clinical application. Int J Clin Exp Med. 8:17088–17095. 2015.
|
|
161
|
Xiao D, Ohlendorf J, Chen Y, Taylor DD,
Rai SN, Waigel S, Zacharias W, Hao H and McMasters KM: Identifying
mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One.
7:e468742012. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Harding C and Stahl P: Transferrin
recycling in reticulocytes: pH and iron are important determinants
of ligand binding and processing. Biochem Biophys Res Commun.
113:650–658. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Liu WH, Ren LN, Wang X, Wang T, Zhang N,
Gao Y, Luo H, Navarro-Alvarez N and Tang LJ: Combination of
exosomes and circulating microRNAs may serve as a promising tumor
marker complementary to alpha-fetoprotein for early-stage
hepatocellular carcinoma diagnosis in rats. J Cancer Res Clin
Oncol. 141:1767–1778. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Wang H, Hou L, Li A, Duan Y, Gao H and
Song X: Expression of serum exosomal microRNA-21 in human
hepatocellular carcinoma. BioMed Res Int. 2014:8648942014.
View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ,
Yang LH, Luo DZ, Dang YW and Chen G: Long noncoding RNAs in
hepatocellular carcinoma: Novel insights into their mechanism.
World J Hepatol. 7:2781–2791. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Kamel MM, Matboli M, Sallam M, Montasser
IF, Saad AS and El-Tawdi AH: Investigation of long noncoding RNAs
expression profile as potential serum biomarkers in patients with
hepatocellular carcinoma. Transl Res. 168:134–145. 2016. View Article : Google Scholar
|