Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2016 Volume 36 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2016 Volume 36 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms

  • Authors:
    • Qingyong Chen
    • Huizhen Hu
    • Demin Jiao
    • Jie Yan
    • Wei Xu
    • Xiali Tang
    • Jun Chen
    • Jian Wang
  • View Affiliations / Copyright

    Affiliations: Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
  • Pages: 909-917
    |
    Published online on: June 3, 2016
       https://doi.org/10.3892/or.2016.4854
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lung cancer is the most common malignancy worldwide. This study aimed to identify miRNA biomarkers of lung adenocarcinoma and to investigate their molecular mechanisms. miRNA expression profiling of tumor tissues and adjacent normal tissues from 10 patients were detected using microarray. Differentially expressed miRNAs (DEMs) were identified, and were verified using quantitative reverse transcription-PCR. Thereafter, correlations between DEM expression and clinicopathological features were determined in 49 patients. Furthermore, Targetscan was utilized to predict target genes, among which transcription factors (TFs) were identified. The interactions among miRNAs, TFs and target genes were used to construct an miRNA-TF-target network. Totally, 11 DEMs were identified, among which two downregulated miRNAs (miR-126-3p and miR-451a) were validated. Low levels of miR-126-3p and miR-451a were associated with poor pathological stage, large tumor diameter and lymph node metastasis (P<0.05). Receiver operating characteristic analysis showed that both miRNAs could predict pathological stage, tumor diameter and lymph node metastasis of lung adenocarcinoma (AUC >0.65, P<0.05). For miR-126-3p, 154 target genes were predicted (e.g., PLXNB2), which were enriched in 29 pathways mainly concerning apoptosis and cancer. For miR‑451a, 397 target genes were predicted, which were enriched in 5 pathways including ‘PPAR signaling pathway’. Ten genes were co-regulated by miR-126-3p and miR-451a, e.g., TSC1. Furthermore, an miRNA-TF-target network was constructed, and a sub-network was identified, including 2 miRNAs, 15 targets, and 7 TFs. In conclusion, miR-126-3p and miR-451a predicted the severity of lung adenocarcinoma. However, the possible mechanisms explored by bioinformatics need to be further validated.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Teh E and Belcher E: Lung cancer: Diagnosis, staging and treatment. Surgery. 32:242–248. 2014.

2 

Stewart BW and Wild CP: World Cancer Report 2014. World Health Organization; Lyon: 2014

3 

Lu C, Onn A and Vaporciyan A: 78: Cancer of the Lung. Holland-Frei Cancer Medicine. 8th edition. People's Medical Publishing House; 2010

4 

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C and Thun MJ: Cancer statistics, 2006. CA Cancer J Clin. 56:106–130. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Frazier TP and Zhang B: Identification of plant microRNAs using expressed sequence tag analysis. Plant Reverse Genetics. Springer; pp. 13–25. 2011, View Article : Google Scholar

6 

Schneider MR: MicroRNAs as novel players in skin development, homeostasis and disease. Br J Dermatol. 166:22–28. 2012. View Article : Google Scholar

7 

Fu SW, Chen L and Man YG: miRNA biomarkers in breast cancer detection and management. J Cancer. 2:116–122. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Nicolas FE, Lopez-Gomollon S, Lopez-Martinez AF and Dalmay T: Silencing human cancer: Identification and uses of microRNAs. Recent Pat Anticancer Drug Discov. 6:94–105. 2011. View Article : Google Scholar

9 

Patnaik SK, Yendamuri S, Kannisto E, Kucharczuk JC, Singhal S and Vachani A: MicroRNA expression profiles of whole blood in lung adenocarcinoma. PLoS One. 7:e460452012. View Article : Google Scholar : PubMed/NCBI

10 

Gao F, Chang J, Wang H and Zhang G: Potential diagnostic value of miR-155 in serum from lung adenocarcinoma patients. Oncol Rep. 31:351–357. 2014.

11 

Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL and Jiang F: Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 127:2870–2878. 2010. View Article : Google Scholar

12 

Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathé EA, Takenoshita S, Yokota J, Haugen A, et al: The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: A retrospective analysis of three cohorts. Clin Cancer Res. 17:1875–1882. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Travis WD, Brambilla W, Mueller-Hermelink HK and Harris CC: World Health Organization classification of tumors: Pathology and Genetics of Tumors of the Lung, Pleura, Thymus and Heart. IARC Press; Lyon: 2004

14 

Sobin LH, Gospodarowicz MK and Wittekind C: TNM Classification of Malignant Tumours. 7th edition. Wiley-Blackwell; 2009

15 

Ohtsuka T, Nomori H, Watanabe K, Kaji M, Naruke T, Suemasu K and Uno K: Prognostic significance of [(18)F]fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer. 107:2468–2473. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Gao X, Gulari E and Zhou X: In situ synthesis of oligonucleotide microarrays. Biopolymers. 73:579–596. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Bolstad BM, Irizarry RA, Astrand M and Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Streichert T, Otto B and Lehmann U: MicroRNA profiling using fluorescence-labeled beads: data acquisition and processing. MicroRNA and Cancer. Springer; pp. 253–268. 2011, View Article : Google Scholar

19 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar

21 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI

22 

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, et al: TRANSFAC and its module TRANSCompel: Transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34:D108–D110. 2006. View Article : Google Scholar

23 

Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, et al: ENCODE data in the UCSC Genome Browser: Year 5 update. Nucleic Acids Res. 41:D56–D63. 2013. View Article : Google Scholar :

24 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, et al: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808–D815. 2013. View Article : Google Scholar :

25 

Smoot ME, Ono K, Ruscheinski J, Wang P-L and Ideker T: Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :

26 

Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, Cohen L, Dan H, Zion O, Strenov Y, et al: MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract. 206:578–584. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JM, Macdonald J, Thomas D, Moskaluk C, Wang Y, et al: Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 66:7466–7472. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kim MK, Jung SB, Kim JS, Roh MS, Lee JH, Lee EH and Lee HW: Expression of microRNA miR-126 and miR-200c is associated with prognosis in patients with non-small cell lung cancer. Virchows Arch. 465:463–471. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Jusufovic E, Keser D, Zukic E, Sejdinovic R and Mrsic D: Downregulated anti-angiogenic miR-19a, miR-126 and let-7b in non-small lung cancer have poor but different prognostic values in squamous and adenocarcinoma subtypes. Eur Respir J. 42:46422013.

30 

Liu B, Peng XC, Zheng X-L, Wang J and Qin YW: miR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 66:169–175. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Perrot V, Vázquez-Prado J and Gutkind JS: Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem. 277:43115–43120. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Li N, Tang A, Huang S, Li Z, Li X, Shen S, Ma J and Wang X: miR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol Cell Biochem. 380:107–119. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Faried A, Faried LS, Kimura H, Nakajima M, Sohda M, Miyazaki T, Kato H, Usman N and Kuwano H: RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur J Cancer. 42:1455–1465. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, Lu H, Pritchard LL, Vannier JP and Malvy C: Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther. 11:267–274. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Vial E, Sahai E and Marshall CJ: ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell. 4:67–79. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Vasiliev JM, Omelchenko T, Gelfand IM, Feder HH and Bonder EM: Rho overexpression leads to mitosis-associated detachment of cells from epithelial sheets: A link to the mechanism of cancer dissemination. Proc Natl Acad Sci USA. 101:12526–12530. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Võsa U, Vooder T, Kolde R, Vilo J, Metspalu A and Annilo T: Meta-analysis of microRNA expression in lung cancer. Int J Cancer. 132:2884–2893. 2013. View Article : Google Scholar

38 

Guan P, Yin Z, Li X, Wu W and Zhou B: Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res. 31:542012. View Article : Google Scholar : PubMed/NCBI

39 

Wang R, Wang ZX, Yang JS, Pan X, De W and Chen LB: MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene. 30:2644–2658. 2011. View Article : Google Scholar : PubMed/NCBI

40 

He Q, Chen J, Lin HL, Hu PJ and Chen MH: Expression of peroxisome proliferator-activated receptor gamma, E-cadherin and matrix metalloproteinases-2 in gastric carcinoma and lymph node metastases. Chin Med J (Engl). 120:1498–1504. 2007.

41 

Inoue K, Kawahito Y, Tsubouchi Y, Yamada R, Kohno M, Hosokawa Y, Katoh D, Bishop-Bailey D, Hla T and Sano H: Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res. 21:2471–2476. 2001.PubMed/NCBI

42 

Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, Inoue K, Hla T and Kondo M: Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun. 270:400–405. 2000. View Article : Google Scholar

43 

Takamochi K, Ogura T, Yokose T, Ochiai A, Nagai K, Nishiwaki Y, Suzuki K and Esumi H: Molecular analysis of the TSC1 gene in adenocarcinoma of the lung. Lung Cancer. 46:271–281. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Liang MC, Ma J, Chen L, Kozlowski P, Qin W, Li D, Goto J, Shimamura T, Hayes DN, Meyerson M, et al: TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene. 29:1588–1597. 2010. View Article : Google Scholar :

45 

Yang Z, Chen S, Luan X, Li Y, Liu M, Li X, Liu T and Tang H: MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. IUBMB Life. 61:1075–1082. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Zhang XJ, Ye H, Zeng CW, He B, Zhang H and Chen YQ: Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 3:462010. View Article : Google Scholar : PubMed/NCBI

47 

Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al: Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar

48 

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Ishimura M, Sakurai-Yageta M, Maruyama T, Ando T, Fukayama M, Goto A and Murakami Y: Involvement of miR-214 and miR-375 in malignant features of non-small-cell lung cancer by down-regulating CADM1. J Cancer Ther. 3:379–387. 2012. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Q, Hu H, Jiao D, Yan J, Xu W, Tang X, Chen J and Wang J: miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms. Oncol Rep 36: 909-917, 2016.
APA
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X. ... Wang, J. (2016). miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms. Oncology Reports, 36, 909-917. https://doi.org/10.3892/or.2016.4854
MLA
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X., Chen, J., Wang, J."miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms". Oncology Reports 36.2 (2016): 909-917.
Chicago
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X., Chen, J., Wang, J."miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms". Oncology Reports 36, no. 2 (2016): 909-917. https://doi.org/10.3892/or.2016.4854
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Q, Hu H, Jiao D, Yan J, Xu W, Tang X, Chen J and Wang J: miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms. Oncol Rep 36: 909-917, 2016.
APA
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X. ... Wang, J. (2016). miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms. Oncology Reports, 36, 909-917. https://doi.org/10.3892/or.2016.4854
MLA
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X., Chen, J., Wang, J."miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms". Oncology Reports 36.2 (2016): 909-917.
Chicago
Chen, Q., Hu, H., Jiao, D., Yan, J., Xu, W., Tang, X., Chen, J., Wang, J."miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: The underlying molecular mechanisms". Oncology Reports 36, no. 2 (2016): 909-917. https://doi.org/10.3892/or.2016.4854
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team