|
1
|
Hara M, Akasaka K, Akinaga S, Okabe M,
Nakano H, Gomez R, Wood D, Uh M and Tamanoi F: Identification of
Ras farnesyltransferase inhibitors by microbial screening. Proc
Natl Acad Sci USA. 90:2281–2285. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ito T, Kawata S, Tamura S, Igura T, Nagase
T, Miyagawa JI, Yamazaki E, Ishiguro H and Matasuzawa Y:
Suppression of human pancreatic cancer growth in BALB/c nude mice
by manumycin, a farnesyl:protein transferase inhibitor. Jpn J
Cancer Res. 87:113–116. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
She M and Jim Yeung SC: Combining a matrix
metalloproteinase inhibitor, a farnesyltransferase inhibitor, and a
taxane improves survival in an anaplastic thyroid cancer model.
Cancer Lett. 238:197–201. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dixit D, Sharma V, Ghosh S, Koul N, Mishra
PK and Sen E: Manumycin inhibits STAT3, telomerase activity, and
growth of glioma cells by elevating intracellular reactive oxygen
species generation. Free Radic Biol Med. 47:364–374. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sears KT, Daino H and Carey GB: Reactive
oxygen species-dependent destruction of MEK and Akt in Manumycin
stimulated death of lymphoid tumor and myeloma cell lines. Int J
Cancer. 122:1496–1505. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Singha PK, Pandeswara S, Venkatachalam MA
and Saikumar P: Manumycin A inhibits triple-negative breast cancer
growth through LC3-mediated cytoplasmic vacuolation death. Cell
Death Dis. 4:e4572013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sugita M, Sugita H and Kaneki M:
Farnesyltransferase inhibitor, Manumycin A, prevents
atherosclerosis development and reduces oxidative stress in
apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol.
27:1390–1395. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sharma V, Shaheen SS, Dixit D and Sen E:
Farnesyltransferase inhibitor manumycin targets IL1β-Ras-HIF-1α
axis in tumor cells of diverse origin. Inflammation. 35:516–519.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saha B and Nandi D: Farnesyltransferase
inhibitors reduce Ras activation and ameliorate
acetaminophen-induced liver injury in mice. Hepatology.
50:1547–1557. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cecrdlova E, Petrickova K, Kolesar L,
Petricek M, Sekerkova A, Svachova V and Striz I: Manumycin A
downregulates release of proinflammatory cytokines from TNF alpha
stimulated human monocytes. Immunol Lett. 169:8–14. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Berrón-Pérez R, Chávez-Sánchez R,
Estrada-García I, Espinosa-Padilla S, Cortez-Gómez R,
Serrano-Miranda E, Ondarza-Aguilera R, Pérez-Tapia M, Olvera B
Pineda, Jiménez-Martínez Mdel C, et al: Indications, usage, and
dosage of the transfer factor. Rev Alerg Mex. 54:134–139.
2007.PubMed/NCBI
|
|
12
|
Arnaudov A and Kostova Z: Dialysable
leukocyte extracts in immunotherapy. Biotechnol Biotechnol Equip.
29:1017–1023. 2015. View Article : Google Scholar
|
|
13
|
Cherenko SO, Reva ОA, Rekalova OM,
Kibizova NI, Yasir SG and Matvienko YO: Immunotherapy with
leukocyte immunomodulator dialysate in patients with
multidrug-resistant tuberculosis. Asthma and Allergies. 3:13–20.
2013.
|
|
14
|
Viza D, Fudenberg HH, Palareti A, Ablashi
D, De Vinci C and Pizza G: Transfer factor: An overlooked potential
for the prevention and treatment of infectious diseases. Folia
Biol. 59:53–67. 2013.
|
|
15
|
Homberg TA, Lara RI, Pérez-Tapia SM and
Jiménez Martínez MDC: Dialyzable leukocyte extracts as adjuvant
treatment for allergic rhinitis. World Allergy Organ J. 7:(Suppl
1). P52014. View Article : Google Scholar
|
|
16
|
Gómez Vera J, Chávez Sánchez R, Flores
Sandoval G, Orea Solano M, López Tiro JJ, Santiago Santos AD,
Espinosa Padilla S, Espinosa Rosales F, Huerta J, Ortega Martell
JA, et al: Transfer factor and allergy. Rev Alerg Mex. 57:208–214.
2010.PubMed/NCBI
|
|
17
|
Lokaj J, Pekarek J and Kuklinek P:
Leukocyte Dialysates and Transfer FactorMayer V and Borvác J:
Slovak Academy of Science; Bratislava: pp. 516–525. 1987
|
|
18
|
Georgescu C: Effect of long-term therapy
with transfer factor in rheumatoid arthritis. Med Interne.
23:135–140. 1985.PubMed/NCBI
|
|
19
|
Juarez PC: Effect of Transferon as an
adjuvant in the treatment of osteosarcoma (In Spanish) (unpublished
dissertation). National Polytechnic Institute; Mexico City:
2011
|
|
20
|
Pilotti V, Mastrorilli M, Pizza G, De
Vinci C, Busutti L, Palareti A, Gozzetti G and Cavallari A:
Transfer factor as an adjuvant to non-small cell lung cancer
(NSCLC) therapy. Biotherapy. 9:117–121. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Franco-Molina MA, Mendoza-Gamboa E,
Zapata-Benavides P, Vera-García ME, Castillo-Tello P, García de la
Fuente A, Mendoza RD, Garza RG, Támez-Guerra RS and
Rodríguez-Padilla C: IMMUNEPOTENT CRP (bovine dialyzable leukocyte
extract) adjuvant immunotherapy: A phase I study in non-small cell
lung cancer patients. Cytotherapy. 10:490–496. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lara HH, Turrent LI, Garza-Treviño EN,
Tamez-Guerra R and Rodriguez-Padilla C: Clinical and immunological
assessment in breast cancer patients receiving anticancer therapy
and bovine dialyzable leukocyte extract as an adjuvant. Exp Ther
Med. 1:425–431. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pineda B, Estrada-Parra S, Pedraza-Medina
B, Rodriguez-Ropon A, Pérez R and Arrieta O: Interstitial transfer
factor as adjuvant immunotherapy for experimental glioma. J Exp
Clin Cancer Res. 24:575–583. 2005.PubMed/NCBI
|
|
24
|
Whyte RI, Schork MA, Sloan H, Orringer MB
and Kirsh MM: Adjuvant treatment using transfer factor for
bronchogenic carcinoma: Long-term follow-up. Ann Thorac Surg.
53:391–396. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pizza G, De Vinci C, Cuzzocrea D, Menniti
D, Aiello E, Maver P, Corrado G, Romagnoli P, Dragoni E, LoConte G,
et al: A preliminary report on the use of transfer factor for
treating stage D3 hormone-unresponsive metastatic prostate cancer.
Biotherapy. 9:123–132. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lal I, Dittus K and Holmes CE: Platelets,
coagulation and fibrinolysis in breast cancer progression. Breast
Cancer Res. 15:2072013. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bambace NM and Holmes CE: The platelet
contribution to cancer progression. J Thromb Haemost. 9:237–249.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gay LJ and Felding-Habermann B:
Contribution of platelets to tumour metastasis. Nat Rev Cancer.
11:123–134. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lin RJ, Afshar-Kharghan V and Schafer AI:
Paraneoplastic thrombocytosis: The secrets of tumor self-promotion.
Blood. 124:184–187. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kerr BA, Miocinovic R, Smith AK, Klein EA
and Byzova TV: Comparison of tumor and microenvironment secretomes
in plasma and in platelets during prostate cancer growth in a
xenograft model. Neoplasia. 12:388–396. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ostberg JR, Ertel BR and Lanphere JA: An
important role for granulocytes in the thermal regulation of colon
tumor growth. Immunol Invest. 34:259–272. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fernández-Aceñero MJ, Galindo-Gallego M,
Sanz J and Aljama A: Prognostic influence of tumor-associated
eosinophilic infiltrate in colorectal carcinoma. Cancer.
88:1544–1548. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Klintrup K, Mäkinen JM, Kauppila S, Väre
PO, Melkko J, Tuominen H, Tuppurainen K, Mäkelä J, Karttunen TJ and
Mäkinen MJ: Inflammation and prognosis in colorectal cancer. Eur J
Cancer. 41:2645–2654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang Y, Ren H, Wang L, Ning Z, Zhuang Y,
Gan J, Chen S, Zhou D, Zhu H, Tan D, et al: Clinical impact of
tumor-infiltrating inflammatory cells in primary small cell
esophageal carcinoma. Int J Mol Sci. 15:9718–9734. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tepper RI, Coffman RL and Leder P: An
eosinophil-dependent mechanism for the antitumor effect of
interleukin-4. Science. 257:548–551. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Giovarelli M, Cappello P, Forni G, Salcedo
T, Moore PA, LeFleur DW, Nardelli B, Di Carlo E, Lollini PL, Ruben
S, et al: Tumor rejection and immune memory elicited by locally
released LEC chemokine are associated with an impressive
recruitment of APCs, lymphocytes, and granulocytes. J Immunol.
164:3200–3206. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Carretero R, Sektioglu IM, Garbi N,
Salgado OC, Beckhove P and Hämmerling GJ: Eosinophils orchestrate
cancer rejection by normalizing tumor vessels and enhancing
infiltration of CD8+ T cells. Nat Immunol. 16:609–617.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Llewellyn BD: An improved Sirius red
method for amyloid. J Med Lab Technol. 27:308–309. 1970.PubMed/NCBI
|
|
39
|
Ma J, Liu L, Che G, Yu N, Dai F and You Z:
The M1 form of tumor-associated macrophages in non-small cell lung
cancer is positively associated with survival time. BMC Cancer.
10:1122010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pommier A, Audemard A, Durand A, Lengagne
R, Delpoux A, Martin B, Douguet L, Le Campion A, Kato M, Avril MF,
et al: Inflammatory monocytes are potent antitumor effectors
controlled by regulatory CD4+ T cells. Proc Natl Acad
Sci USA. 110:13085–13090. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chanmee T, Ontong P, Konno K and Itano N:
Tumor-associated macrophages as major players in the tumor
microenvironment. Cancers. 6:1670–1690. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sagiv JY, Michaeli J, Assi S, Mishalian I,
Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, et
al: Phenotypic diversity and plasticity in circulating neutrophil
subpopulations in cancer. Cell Reports. 10:562–573. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tao K, Fang M, Alroy J and Sahagian GG:
Imagable 4T1 model for the study of late stage breast cancer. BMC
Cancer. 8:2282008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
DuPre' SA and Hunter KW Jr: Murine mammary
carcinoma 4T1 induces a leukemoid reaction with splenomegaly:
Association with tumor-derived growth factors. Exp Mol Pathol.
82:12–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu H and Tabuchi T, Takemura A, Kasuga T,
Motohashi G, Hiraishi K, Katano M, Nakada I, Ubukata H and Tabuchi
T: The granulocyte/lymphocyte ratio as an independent predictor of
tumour growth, metastasis and progression: Its clinical
applications. Mol Med Rep. 1:699–704. 2008.PubMed/NCBI
|
|
46
|
Rochet NM, Markovic SN and Porrata LF: The
role of complete blood cell count in prognosis-Watch this space!
Oncol Hematol Rev. 8:76–82. 2012. View Article : Google Scholar
|
|
47
|
Benatar T, Cao MY, Lee Y, Li H, Feng N, Gu
X, Lee V, Jin H, Wang M, Der S, et al: Virulizin induces production
of IL-17E to enhance antitumor activity by recruitment of
eosinophils into tumors. Cancer Immunol Immunother. 57:1757–1769.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kousis PC, Henderson BW, Maier PG and
Gollnick SO: Photodynamic therapy enhancement of antitumor immunity
is regulated by neutrophils. Cancer Res. 67:10501–10510. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni
JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A,
Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate
T cell responses in early-stage human lung cancer. J Clin Invest.
124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mete S: Targeting tumor microenvironment
by zoledronate as a novel therapeutic approach in cancer
(dissertation). University of Zurich, Faculty of Science; Zurich:
2011
|
|
51
|
Demers M, Krause DS, Schatzberg D,
Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD:
Cancers predispose neutrophils to release extracellular DNA traps
that contribute to cancer-associated thrombosis. Proc Natl Acad Sci
USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Schmidt H, Bastholt L, Geertsen P,
Christensen IJ, Larsen S, Gehl J and von der Maase H: Elevated
neutrophil and monocyte counts in peripheral blood are associated
with poor survival in patients with metastatic melanoma: A
prognostic model. Br J Cancer. 93:273–278. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Atzpodien J and Reitz M: Peripheral blood
neutrophils as independent immunologic predictor of response and
long-term survival upon immunotherapy in metastatic renal-cell
carcinoma. Cancer Biother Radiopharm. 23:129–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Coffelt SB, Kersten K, Doornebal CW,
Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M,
Hawinkels LJ, Jonkers J, et al: IL-17-producing γδ T cells and
neutrophils conspire to promote breast cancer metastasis. Nature.
522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shimada H, Takiguchi N, Kainuma O, Soda H,
Ikeda A, Cho A, Miyazaki A, Gunji H, Yamamoto H and Nagata M: High
preoperative neutrophil-lymphocyte ratio predicts poor survival in
patients with gastric cancer. Gastric Cancer. 13:170–176. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shibutani M, Maeda K, Nagahara H, Noda E,
Ohtani H, Nishiguchi Y and Hirakawa K: A high preoperative
neutrophil-to-lymphocyte ratio is associated with poor survival in
patients with colorectal cancer. Anticancer Res. 33:3291–3294.
2013.PubMed/NCBI
|
|
57
|
Chen J, Deng Q, Pan Y, He B, Ying H, Sun
H, Liu X and Wang S: Prognostic value of neutrophil-to-lymphocyte
ratio in breast cancer. FEBS Open Bio. 5:502–507. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Koh CH, Bhoo-Pathy N, Ng KL, Jabir RS, Tan
GH, See MH, Jamaris S and Taib NA: Utility of pre-treatment
neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as
prognostic factors in breast cancer. Br J Cancer. 113:150–158.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Templeton AJ, McNamara MG, Šeruga B,
Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G,
Knox JJ, Tran B, et al: Prognostic role of neutrophil-to-lymphocyte
ratio in solid tumors: A systematic review and meta-analysis. J
Natl Cancer Inst. 106:dju1242014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ueta E, Osaki T, Yoneda K, Yamamoto T and
Umazume M: Influence of inductive chemoradiotherapy on salivary
polymorphonuclear leukocyte (SPMN) functions in oral cancer. J Oral
Pathol Med. 23:418–422. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Baskic D, Arsenijevic NN and Acimovic LD:
Monocyte phagocytic function in patients with breast cancer during
therapy. Meeting abstracts, 23rd Congress of the International
Association of Breast Cancer Research. 13–16 June; Dusseldorf,
Germany. http://breast-cancer-research.com/content/3/S1
|
|
62
|
Reshma K, Bharathi B, Rao AV, Dinesh M and
Vasudevan DM: Phagocytosis: A marker of decreased immune response
in radiation treated oral cancers. Biomed Res. 20:75–77. 2009.
|
|
63
|
Cron J and Jansa P: Role of phagocytic
cells in cancer. Folia Haematol Int Mag Klin Morphol Blutforsch.
108:481–527. 1981.PubMed/NCBI
|
|
64
|
Karagöz B, Bilgi O, Alacacioğlu A, Ozgün
A, Sayan O, Erikçi AA and Kandemir EG: Mean platelet volume
increase after tamoxifen, but not after anastrazole in adjuvant
therapy of breast cancer. Med Oncol. 27:199–202. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Taucher S, Salat A, Gnant M, Kwasny W,
Mlineritsch B, Menzel RC, Schmid M, Smola MG, Stierer M, Tausch C,
et al: Austrian Breast and Colorectal Cancer Study Group: Impact of
pretreatment thrombocytosis on survival in primary breast cancer.
Thromb Haemost. 89:1098–1106. 2003.PubMed/NCBI
|
|
66
|
Brockmann MA, Giese A, Mueller K, Kaba FJ,
Lohr F, Weiss C, Gottschalk S, Nolte I, Leppert J, Tuettenberg J,
et al: Preoperative thrombocytosis predicts poor survival in
patients with glioblastoma. Neuro Oncol. 9:335–342. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lu CC, Chang KW, Chou FC, Cheng CY and Liu
CJ: Association of pretreatment thrombocytosis with disease
progression and survival in oral squamous cell carcinoma. Oral
Oncol. 43:283–288. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stravodimou A and Voutsadakis IA:
Pretreatment thrombocytosis as a prognostic factor in metastatic
breast cancer. Int J Breast Cancer. 2013:2895632013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Digklia A and Voutsadakis IA:
Thrombocytosis as a prognostic marker in stage III and IV serous
ovarian cancer. Obstet Gynecol Sci. 57:457–463. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gasic GJ, Gasic TB and Stewart CC:
Antimetastatic effects associated with platelet reduction. Proc
Natl Acad Sci USA. 61:46–52. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li R, Ren M, Chen N, Luo M, Deng X, Xia J,
Yu G, Liu J, He B, Zhang X, et al: Presence of intratumoral
platelets is associated with tumor vessel structure and metastasis.
BMC Cancer. 14:1672014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mikami J, Kurokawa Y, Takahashi T,
Miyazaki Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Mori M
and Doki Y: Antitumor effect of antiplatelet agents in gastric
cancer cells: An in vivo and in vitro study. Gastric Cancer.
19:817–826. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Stone RL, Nick AM, McNeish IA, Balkwill F,
Han HD, Bottsford-Miller J, Rupairmoole R, Armaiz-Pena GN, Pecot
CV, Coward J, et al: Paraneoplastic thrombocytosis in ovarian
cancer. N Engl J Med. 366:610–618. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sitia G, Aiolfi R, Di Lucia P, Mainetti M,
Fiocchi A, Mingozzi F, Esposito A, Ruggeri ZM, Chisari FV,
Iannacone M, et al: Antiplatelet therapy prevents hepatocellular
carcinoma and improves survival in a mouse model of chronic
hepatitis B. Proc Natl Acad Sci USA. 109:E2165–E2172. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rachidi S, Wallace K, Day TA, Alberg AJ
and Li Z: Lower circulating platelet counts and antiplatelet
therapy independently predict better outcomes in patients with head
and neck squamous cell carcinoma. J Hematol Oncol. 7:652014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Adler HL, McCurdy MA, Kattan MW, Timme TL,
Scardino PT and Thompson TC: Elevated levels of circulating
interleukin-6 and transforming growth factor-beta1 in patients with
metastatic prostatic carcinoma. J Urol. 161:182–187. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Petanidis S, Anestakis D, Argyraki M,
Hadzopoulou-Cladaras M and Salifoglou A: Differential expression of
IL-17, 22 and 23 in the progression of colorectal cancer in
patients with K-ras mutation: Ras signal inhibition and crosstalk
with GM-CSF and IFN-γ. PLoS One. 8:e736162013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu M, Jin X, He X, Pan L, Zhang X and
Zhao Y: Macrophages support splenic erythropoiesis in 4T1
tumor-bearing mice. PLoS One. 10:e01219212015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yilmaz M, Cimilli G, Saritemur M, Demircan
F, Isaoglu U, Kisaoglu A and Emet M: Diagnostic accuracy of
neutrophil/lymphocyte ratio, red cell distribution width and
platelet distribution width in ovarian torsion. J Obstet Gynaecol.
36:218–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kritchevsky SB and Kritchevsky D: Serum
cholesterol and cancer risk: An epidemiologic perspective. Annu Rev
Nutr. 12:391–416. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hussein MA and Boshra SA: Antitumor and
structure antioxidant activity relationship of colchicine on
Ehrlich ascites carcinoma (EAC) in female mice. Int J Drug Deliv.
5:430–437. 2013.
|
|
82
|
Furberg AS, Jasienska G, Bjurstam N,
Torjesen PA, Emaus A, Lipson SF, Ellison PT and Thune I: Metabolic
and hormonal profiles: HDL cholesterol as a plausible biomarker of
breast cancer risk. The Norwegian EBBA Study. Cancer Epidemiol
Biomarkers Prev. 14:33–40. 2005.
|
|
83
|
Jafri H, Alsheikh-Ali AA and Karas RH:
Baseline and on-treatment high-density lipoprotein cholesterol and
the risk of cancer in randomized controlled trials of
lipid-altering therapy. J Am Coll Cardiol. 55:2846–2854. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Touvier M, Fassier P, His M, Norat T, Chan
DS, Blacher J, Hercberg S, Galan P, Druesne-Pecollo N and
Latino-Martel P: Cholesterol and breast cancer risk: A systematic
review and meta-analysis of prospective studies. Br J Nutr.
114:347–357. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Robinson JG: Low high-density lipoprotein
cholesterol and chronic disease risk marker or causal? J Am Coll
Cardiol. 55:2855–2857. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ravichandran P, Elangovan V and
Govindasamy S: Chemopreventive effect of quercetin in
sarcoma-180-bearing mice. J Clin Biochem Nutr. 22:149–154. 1997.
View Article : Google Scholar
|