Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2017 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2017 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review)

  • Authors:
    • Caterina Musolino
    • Alessandro Allegra
    • Govanni Pioggia
    • Sebastiano Gangemi
  • View Affiliations / Copyright

    Affiliations: Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Messina, Italy, Institute of Clinical Physiology, IFN CNR, Messina Unit, Messina, Italy, School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital ʻG. Martinoʼ, Messina, Italy
  • Pages: 671-683
    |
    Published online on: December 5, 2016
       https://doi.org/10.3892/or.2016.5291
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic inflammation is considered to be one of the hallmarks of tumor initiation and progression. Changes occurring in the microenvironment of progressing tumors resemble the process of chronic inflammation, which begins with ischemia followed by interstitial and cellular edema, appearance of immune cells, growth of blood vessels and tissue repair, and development of inflammatory infiltrates. Moreover, long‑term production and accumulation of inflammatory factors lead to local and systemic immunosuppression associated with cancer progression. Of the several mechanisms described to explain this anergy, the accumulation of myeloid cells in the tumor, spleen, and peripheral blood of cancer patients has gained considerable interest. A population of suppressive CD11b+Gr-1+ cells has in fact been designated as myeloid-derived suppressor cells (MDSCs). MDSCs are a unique category of the myeloid lineage, and they induce the prevention of the development of cytotoxic T lymphocytes (CTLs) in vitro, and the induction of antigen-specific CD8+ T-cell tolerance in vivo. Therapeutic approaches directed toward the manipulation of the MDSC population and their function may improve chemoimmune-enhancing therapy for advanced malignancies.
View Figures
View References

1 

Balkwill F and Mantovani A: Inflammation and cancer: back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Kuper H, Adami HO and Trichopoulos D: Infections as a major preventable cause of human cancer. J Intern Med. 248:171–183. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Shacter E and Weitzman SA: Chronic inflammation and cancer. Oncology (Williston Park). 16:217–232. 2002.PubMed/NCBI

4 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Kusmartsev S and Gabrilovich DI: Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 51:293–298. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P and Bronte V: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 53:64–72. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Vakkila J and Lotze MT: Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 4:641–648. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Aller MA, Arias JL, Nava MP and Arias J: Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune, and endocrine functional systems. Exp Biol Med. 229:170–181. 2004. View Article : Google Scholar

9 

Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R and Giaccia AJ: Investigating hypoxic tumor physiology through gene expression patterns. Oncogene. 22:5907–5914. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Whiteside TL: The tumor microenvironment and its role in promoting tumor growth. Oncogene. 27:5904–5912. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Srivastava MK, Andersson Å, Zhu L, Harris-White M, Lee JM, Dubinett S and Sharma S: Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy. 4:291–304. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Gallucci S and Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol. 13:114–119. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Whiteside TL: Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 16:3–15. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Smyth MJ, Dunn GP and Schreiber RD: Cancer immunosurveillance and immunoediting: The roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 90:1–50. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Poggi A and Zocchi MR: Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp. 54:323–333. 2006. View Article : Google Scholar

16 

Strober S: Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 2:219–237. 1984. View Article : Google Scholar : PubMed/NCBI

17 

Gabrilovich DI, Velders MP, Sotomayor EM and Kast WM: Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol. 166:5398–5406. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, et al: IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol. 170:270–278. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G and Geldhof AB: Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol. 170:5064–5074. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P and Segal DM: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 168:689–695. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, et al: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64:5839–5849. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP and Zanovello P: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 96:3838–3846. 2000.PubMed/NCBI

23 

Kusmartsev S and Gabrilovich DI: Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 74:186–196. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Li Q, Pan PY, Gu P, Xu D and Chen SH: Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 64:1130–1139. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Gabrilovich DI: Molecular mechanisms and therapeutic reversal of immune suppression in cancer. Curr Cancer Drug Targets. 7:12007. View Article : Google Scholar : PubMed/NCBI

26 

Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Youn JI and Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 40:2969–2975. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Condamine T and Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32:19–25. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O'Neill A, et al: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65:3044–3048. 2005.PubMed/NCBI

30 

Poschke I, Mougiakakos D, Hansson J, Masucci GV and Kiessling R: Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-Sign. Cancer Res. 70:4335–4345. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ and Ostrand-Rosenberg S: Lung cancer patients' CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother. 57:1493–1504. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP and Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 166:678–689. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Peláez B, Campillo JA, López-Asenjo JA and Subiza JL: Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol. 166:6608–6615. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Goddard S, Youster J, Morgan E and Adams DH: Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol. 164:511–519. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Halliday GM and Le S: Transforming growth factor-β produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int Immunol. 13:1147–1154. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Chomarat P, Banchereau J, Davoust J and Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 1:510–514. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D and Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 2:1096–1103. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Hammad H, de Heer HJ, Soullie T, Hoogsteden HC, Trottein F and Lambrecht BN: Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol. 171:3936–3940. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Jing H, Vassiliou E and Ganea D: Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J Leukoc Biol. 74:868–879. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J, Davis ID, Cebon J and Maraskovsky E: Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood. 103:1391–1397. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Murdoch C, Muthana M, Coffelt SB and Lewis CE: The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 8:618–631. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Sica A and Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 117:1155–1166. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Bunt SK, Yang L, Sinha P, Clements VK, Leips J and Ostrand-Rosenberg S: Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67:10019–10026. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Bunt SK, Sinha P, Clements VK, Leips J and Ostrand-Rosenberg S: Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 176:284–290. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J and Umansky V: Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer. 136:2352–2360. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Blaser MJ, Chyou PH and Nomura A: Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res. 55:562–565. 1995.PubMed/NCBI

47 

Ernst PB and Gold BD: The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol. 54:615–640. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR and Okada H: GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 73:6413–6423. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E and Baniyash M: Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 38:541–554. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Polz J, Remke A, Weber S, Schmidt D, Weber-Steffens D, Pietryga-Krieger A, Müller N, Ritter U, Mostböck S and Männel DN: Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity. Immun Inflamm Dis. 2:121–130. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S and Srikrishna G: Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 181:4666–4675. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, et al: Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 205:2235–2249. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Tsan MF: Toll-like receptors, inflammation and cancer. Semin Cancer Biol. 16:32–37. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E and Baniyash M: A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood. 111:1437–1447. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Nakagomi H, Petersson M, Magnusson I, Juhlin C, Matsuda M, Mellstedt H, Taupin JL, Vivier E, Anderson P and Kiessling R: Decreased expression of the signal-transducing ζ chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer Res. 53:5610–5612. 1993.PubMed/NCBI

56 

Matsuda M, Petersson M, Lenkei R, Taupin JL, Magnusson I, Mellstedt H, Anderson P and Kiessling R: Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer. 61:765–772. 1995. View Article : Google Scholar : PubMed/NCBI

57 

Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G and Whiteside TL: Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res. 2:161–173. 1996.PubMed/NCBI

58 

Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, Petersson M, Kast WM and Kiessling R: Decreased expression of signal-transducing ζ chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res. 2:1825–1828. 1996.PubMed/NCBI

59 

Kurt RA, Urba WJ, Smith JW and Schoof DD: Peripheral T lymphocytes from women with breast cancer exhibit abnormal protein expression of several signaling molecules. Int J Cancer. 78:16–20. 1998. View Article : Google Scholar : PubMed/NCBI

60 

Kuss I, Saito T, Johnson JT and Whiteside TL: Clinical significance of decreased ζ chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res. 5:329–334. 1999.PubMed/NCBI

61 

Healy CG, Simons JW, Carducci MA, DeWeese TL, Bartkowski M, Tong KP and Bolton WE: Impaired expression and function of signal-transducing ζ chains in peripheral T cells and natural killer cells in patients with prostate cancer. Cytometry. 32:109–119. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L and Baniyash M: TCR ζ downregulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol. 177:4763–4772. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Baniyash M: TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 4:675–687. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Baniyash M: Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol. 16:80–88. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S and Carbone DP: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 92:4150–4166. 1998.PubMed/NCBI

66 

Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, et al: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 10:48–54. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Marigo I, Dolcetti L, Serafini P, Zanovello P and Bronte V: Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 222:162–179. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Serafini P, Borrello I and Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 16:53–65. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P and Restifo NP: Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol. 162:5728–5737. 1999.PubMed/NCBI

70 

Serafini P, Carbley R, Noonan KA, Tan G, Bronte V and Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64:6337–6343. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR and Okada H: COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71:2664–2674. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, Guenterberg K, Kondadasula SV, Chaudhury AR, La Perle KM, et al: Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 71:5101–5110. 2011. View Article : Google Scholar : PubMed/NCBI

73 

McKenna KC, Beatty KM, Bilonick RA, Schoenfield L, Lathrop KL and Singh AD: Activated CD11b+CD15+ granulocytes increase in the blood of patients with uveal melanoma. Invest Ophthalmol Vis Sci. 50:4295–4303. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Young MR, Petruzzelli GJ, Kolesiak K, Achille N, Lathers DM and Gabrilovich DI: Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells. Hum Immunol. 62:332–341. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G and Rivoltini L: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 25:2546–2553. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Achberger S, Aldrich W, Tubbs R, Crabb JW, Singh AD and Triozzi PL: Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol. 58:182–186. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Danna EA, Sinha P, Gilbert M, Clements VK, Pulaski BA and Ostrand-Rosenberg S: Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res. 64:2205–2211. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Sinha P, Clements VK and Ostrand-Rosenberg S: Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol. 174:636–645. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP and Gabrilovich DI: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 6:1755–1766. 2000.PubMed/NCBI

80 

Tinder TL, Subramani DB, Basu GD, Bradley JM, Schettini J, Million A, Skaar T and Mukherjee P: MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J Immunol. 181:3116–3125. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E and Grubeck-Loebenstein B: Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 9:606–612. 2003.PubMed/NCBI

82 

Terabe M and Berzofsky JA: Immunoregulatory T cells in tumor immunity. Curr Opin Immunol. 16:157–162. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Cuenca A, Cheng F, Wang H, Brayer J, Horna P, Gu L, Bien H, Borrello IM, Levitsky HI and Sotomayor EM: Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res. 63:9007–9015. 2003.PubMed/NCBI

84 

Schmidt-Wolf IG, Dejbakhsh-Jones S, Ginzton N, Greenberg P and Strober S: T-cell subsets and suppressor cells in human bone marrow. Blood. 80:3242–3250. 1992.PubMed/NCBI

85 

Young MR, Wright MA, Matthews JP, Malik I and Prechel M: Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β and nitric oxide. J Immunol. 156:1916–1922. 1996.PubMed/NCBI

86 

Angulo I, Rodríguez R, García B, Medina M, Navarro J and Subiza JL: Involvement of nitric oxide in bone marrow-derived natural suppressor activity. Its dependence on IFN-γ. J Immunol. 155:15–26. 1995.PubMed/NCBI

87 

Brooks JC and Hoskin DW: The inhibitory effect of cyclophosphamide-induced MAC-1+ natural suppressor cells on IL-2 and IL-4 utilization in MLR. Transplantation. 58:1096–1103. 1994. View Article : Google Scholar : PubMed/NCBI

88 

Kusmartsev SA, Li Y and Chen SH: Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol. 165:779–785. 2000. View Article : Google Scholar : PubMed/NCBI

89 

Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB and Ochoa AC: L-arginine consumption by macrophages modulates the expression of CD3 ζ chain in T lymphocytes. J Immunol. 171:1232–1239. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Bronte V, Serafini P, Mazzoni A, Segal DM and Zanovello P: L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24:302–306. 2003. View Article : Google Scholar : PubMed/NCBI

91 

Kusmartsev S, Nefedova Y, Yoder D and Gabrilovich DI: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 172:989–999. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Schmielau J and Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61:4756–4760. 2001.PubMed/NCBI

93 

Hanson EM, Clements VK, Sinha P, Ilkovitch D and Ostrand-Rosenberg S: Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 183:937–944. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Li H, Han Y, Guo Q, Zhang M and Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β 1. J Immunol. 182:240–249. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J and Ochoa AC: Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med. 202:931–939. 2005. View Article : Google Scholar : PubMed/NCBI

96 

Taheri F, Ochoa JB, Faghiri Z, Culotta K, Park HJ, Lan MS, Zea AH and Ochoa AC: l-Arginine regulates the expression of the T-cell receptor ζ chain (CD3ζ) in Jurkat cells. Clin Cancer Res. 7:958–965. 2001.

97 

Bernard AC, Mistry SK, Morris SM Jr, O'Brien WE, Tsuei BJ, Maley ME, Shirley LA, Kearney PA, Boulanger BR and Ochoa JB: Alterations in arginine metabolic enzymes in trauma. Shock. 15:215–219. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Ichihara F, Kono K, Sekikawa T and Matsumoto Y: Surgical stress induces decreased expression of signal-transducing ζ molecules in T cells. Eur Surg Res. 31:138–146. 1999. View Article : Google Scholar : PubMed/NCBI

99 

Park KG, Heys SD, Blessing K, Kelly P, McNurlan MA, Eremin O and Garlick PJ: Stimulation of human breast cancers by dietary L-arginine. Clin Sci. 82:413–417. 1992. View Article : Google Scholar : PubMed/NCBI

100 

Pan PY, Zang Y, Weber K, Meseck ML and Chen SH: OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther. 6:528–536. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Makarenkova VP, Bansal V, Matta BM, Perez LA and Ochoa JB: CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 176:2085–2094. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP and Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 6:409–421. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F and Musolino C: The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Invest. 32:470–495. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Ye XZ, Yu SC and Bian XW: Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genomics. 37:423–430. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Mantovani G, Macciò A, Madeddu C, Mura L, Gramignano G, Lusso MR, Massa E, Mocci M and Serpe R: Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med. 81:664–673. 2003. View Article : Google Scholar : PubMed/NCBI

106 

Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, Kupisz K and Kandefer-Szerszeń M: Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol. 43:252–258. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, Battistini L, Iafrate M, Prayer-Galetti T, Pagano F, et al: Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 201:1257–1268. 2005. View Article : Google Scholar : PubMed/NCBI

108 

Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J and Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 13:828–835. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Nagaraj S, Schrum AG, Cho HI, Celis E and Gabrilovich DI: Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol. 184:3106–3116. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Yan Z, Garg SK and Banerjee R: Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem. 285:41525–41532. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Yan Z, Garg SK, Kipnis J and Banerjee R: Extracellular redox modulation by regulatory T cells. Nat Chem Biol. 5:721–723. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Bronte V, Serafini P, Apolloni E and Zanovello P: Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother. 24:431–446. 2001. View Article : Google Scholar : PubMed/NCBI

113 

Salvadori S, Martinelli G and Zier K: Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol. 164:2214–2220. 2000. View Article : Google Scholar : PubMed/NCBI

114 

Seung LP, Rowley DA, Dubey P and Schreiber H: Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA. 92:6254–6258. 1995. View Article : Google Scholar : PubMed/NCBI

115 

Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, et al: Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 198:1741–1752. 2003. View Article : Google Scholar : PubMed/NCBI

116 

Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S and Bronte V: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 9:470–481. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA and Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 7:11021–11028. 2007. View Article : Google Scholar

118 

Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S and Gabrilovich DI: All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66:9299–9307. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M and Toth B: Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 7:140–151. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Suzuki E, Kapoor V, Jassar AS, Kaiser LR and Albelda SM: Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 11:6713–6721. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Hotchkiss RS, Tinsley KW, Hui JJ, Chang KC, Swanson PE, Drewry AM, Buchman TG and Karl IE: p53-dependent and -independent pathways of apoptotic cell death in sepsis. J Immunol. 164:3675–3680. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Ding ZC, Lu X, Yu M, Lemos H, Huang L, Chandler P, Liu K, Walters M, Krasinski A, Mack M, et al: Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis. Cancer Res. 74:3441–3453. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Triozzi PL, Aldrich W and Singh A: Effects of interleukin-1 receptor antagonist on tumor stroma in experimental uveal melanoma. Invest Ophthalmol Vis Sci. 52:5529–5535. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Jiang J, Wang Z, Li Z, Zhang J, Wang C, Xu X and Qin Z: Early exposure of high-dose interleukin-4 to tumor stroma reverses myeloid cell-mediated T-cell suppression. Gene Ther. 17:991–999. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, et al: Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 15:2148–2157. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH and Cohen PA: Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70:3526–3536. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM and Chen SH: Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 111:219–228. 2008. View Article : Google Scholar : PubMed/NCBI

128 

Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, et al: HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 12:230–238. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Hayes CS, Shicora AC, Keough MP, Snook AE, Burns MR and Gilmour SK: Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunol Res. 2:274–285. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Santilli G, Piotrowska I, Cantilena S, Chayka O, D'Alicarnasso M, Morgenstern DA, Himoudi N, Pearson K, Anderson J, Thrasher AJ, et al: Polyphenon [corrected] E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res. 19:1116–1125. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V and Borrello I: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 203:2691–2702. 2006. View Article : Google Scholar : PubMed/NCBI

132 

Melani C, Sangaletti S, Barazzetta FM, Werb Z and Colombo MP: Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67:11438–11446. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G and Rivoltini L: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res. 66:9290–9298. 2006. View Article : Google Scholar : PubMed/NCBI

134 

Ghoreschi K, Laurence A and O'Shea JJ: Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat Immunol. 10:356–360. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Egberts F, Kahler KC, Livingstone E and Hauschild A: Metastatic melanoma: scientific rationale for sorafenib treatment and clinical results. Onkologie. 31:398–403. 2008. View Article : Google Scholar : PubMed/NCBI

136 

Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, et al: Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 24:16–24. 2006. View Article : Google Scholar : PubMed/NCBI

137 

Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, Redman BG, Margolin KA, Merchan JR, Wilding G, et al: Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 295:2516–2524. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Motzer RJ and Bukowski RM: Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol. 24:5601–5608. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY and Chen SH: The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69:2514–2522. 2009. View Article : Google Scholar : PubMed/NCBI

140 

van Cruijsen H, Hoekman K, Stam AG, van den Eertwegh AJ, Kuenen BC, Scheper RJ, Giaccone G and de Gruijl TD: Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clin Dev Immunol. 2007:173152007. View Article : Google Scholar : PubMed/NCBI

141 

Xin H, Zhang C, Herrmann A, Du Y, Figlin R and Yu H: Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69:2506–2513. 2009. View Article : Google Scholar : PubMed/NCBI

142 

Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI, Ko JS, Cohen PA, Finke JH and Storkus WJ: Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer. 129:2158–2170. 2011. View Article : Google Scholar : PubMed/NCBI

143 

North RJ: Down-regulation of the antitumor immune response. Adv Cancer Res. 45:1–43. 1985. View Article : Google Scholar : PubMed/NCBI

144 

Hart KM, Usherwood EJ and Berwin BL: CX3CR1 delineates temporally and functionally distinct subsets of myeloid-derived suppressor cells in a mouse model of ovarian cancer. Immunol Cell Biol. 92:499–508. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI

146 

Tomihara K, Guo M and Shin T, Sun X, Ludwig SM, Brumlik MJ, Zhang B, Curiel TJ and Shin T: Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells. J Immunol. 184:6151–6160. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA and Kang CY: Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol. 182:1818–1828. 2009. View Article : Google Scholar : PubMed/NCBI

148 

Nausch N, Galani IE, Schlecker E and Cerwenka A: Mononuclear myeloid-derived ‘suppressor’ cells express RAE-1 and activate natural killer cells. Blood. 112:4080–4089. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Greifenberg V, Ribechini E, Rössner S and Lutz MB: Myeloid-derived suppressor cell activation by combined LPS and IFN-γ treatment impairs DC development. Eur J Immunol. 39:2865–2876. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Dolcetti L, Peranzoni E, Ugel S, Marigo I, Gomez A Fernandez, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, et al: Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol. 40:22–35. 2010. View Article : Google Scholar : PubMed/NCBI

151 

Bronte V: Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol. 39:2670–2672. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A and Rohrschneider LR: p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10:1084–1095. 1996. View Article : Google Scholar : PubMed/NCBI

153 

Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G and Humphries RK: Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12:1610–1620. 1998. View Article : Google Scholar : PubMed/NCBI

154 

Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A and Krystal G: SHIP represses the generation of alternatively activated macrophages. Immunity. 23:361–374. 2005. View Article : Google Scholar : PubMed/NCBI

155 

Paraiso KHT, Ghansah T, Costello A, Engelman RW and Kerr WG: Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. J Immunol. 178:2893–2900. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Guedez L, Jensen-Taubman S, Bourboulia D, Kwityn CJ, Wei B, Caterina J and Stetler-Stevenson WG: TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother. 35:502–512. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Kaimala S, Mohamed YA, Nader N, Issac J, Elkord E, Chouaib S, Fernandez-Cabezudo MJ and Al-Ramadi BK: Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity. Cancer Immunol Immunother. 63:587–599. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Musolino C, Allegra A, Pioggia G and Gangemi S: Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncol Rep 37: 671-683, 2017.
APA
Musolino, C., Allegra, A., Pioggia, G., & Gangemi, S. (2017). Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncology Reports, 37, 671-683. https://doi.org/10.3892/or.2016.5291
MLA
Musolino, C., Allegra, A., Pioggia, G., Gangemi, S."Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review)". Oncology Reports 37.2 (2017): 671-683.
Chicago
Musolino, C., Allegra, A., Pioggia, G., Gangemi, S."Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review)". Oncology Reports 37, no. 2 (2017): 671-683. https://doi.org/10.3892/or.2016.5291
Copy and paste a formatted citation
x
Spandidos Publications style
Musolino C, Allegra A, Pioggia G and Gangemi S: Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncol Rep 37: 671-683, 2017.
APA
Musolino, C., Allegra, A., Pioggia, G., & Gangemi, S. (2017). Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncology Reports, 37, 671-683. https://doi.org/10.3892/or.2016.5291
MLA
Musolino, C., Allegra, A., Pioggia, G., Gangemi, S."Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review)". Oncology Reports 37.2 (2017): 671-683.
Chicago
Musolino, C., Allegra, A., Pioggia, G., Gangemi, S."Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review)". Oncology Reports 37, no. 2 (2017): 671-683. https://doi.org/10.3892/or.2016.5291
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team