|
1
|
Birchmeier C, Birchmeier W, Gherardi E and
Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol
Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Andermarcher E, Surani MA and Gherardi E:
Co-expression of the HGF/SF and c-met genes during early mouse
embryogenesis precedes reciprocal expression in adjacent tissues
during organogenesis. Dev Genet. 18:254–266. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Schmidt C, Bladt F, Goedecke S, Brinkmann
V, Zschiesche W, Sharpe M, Gherardi E and Birchmeier C: Scatter
factor/hepatocyte growth factor is essential for liver development.
Nature. 373:699–702. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Uehara Y, Minowa O, Mori C, Shiota K, Kuno
J, Noda T and Kitamura N: Placental defect and embryonic lethality
in mice lacking hepatocyte growth factor/scatter factor. Nature.
373:702–705. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Maina F, Hilton MC, Ponzetto C, Davies AM
and Klein R: Met receptor signaling is required for sensory nerve
development and HGF promotes axonal growth and survival of sensory
neurons. Genes Dev. 11:3341–3350. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Borowiak M, Garratt AN, Wüstefeld T,
Strehle M, Trautwein C and Birchmeier C: Met provides essential
signals for liver regeneration. Proc Natl Acad Sci USA.
101:10608–10613. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Huh CG, Factor VM, Sánchez A, Uchida K,
Conner EA and Thorgeirsson SS: Hepatocyte growth factor/c-met
signaling pathway is required for efficient liver regeneration and
repair. Proc Natl Acad Sci USA. 101:4477–4482. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Furlan A, Kherrouche Z, Montagne R, Copin
MC and Tulasne D: Thirty years of research on met receptor to move
a biomarker from bench to bedside. Cancer Res. 74:6737–6744. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kermorgant S, Aparicio T, Dessirier V,
Lewin MJ and Lehy T: Hepatocyte growth factor induces colonic
cancer cell invasiveness via enhanced motility and protease
overproduction. Evidence for PI3 kinase and PKC involvement.
Carcinogenesis. 22:1035–1042. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Weidner KM, Sachs M and Birchmeier W: The
Met receptor tyrosine kinase transduces motility, proliferation,
and morphogenic signals of scatter factor/hepatocyte growth factor
in epithelial cells. J Cell Biol. 121:145–154. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Trusolino L, Bertotti A and Comoglio PM:
MET signalling: Principles and functions in development, organ
regeneration and cancer. Nat Rev Mol Cell Biol. 11:834–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Furlan A, Stagni V, Hussain A, Richelme S,
Conti F, Prodosmo A, Destro A, Roncalli M, Barilà D and Maina F:
Abl interconnects oncogenic Met and p53 core pathways in cancer
cells. Cell Death Differ. 18:1608–1616. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Vigna E and Comoglio PM: Targeting the
oncogenic Met receptor by antibodies and gene therapy. Oncogene.
34:1883–1889. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Engelman JA and Settleman J: Acquired
resistance to tyrosine kinase inhibitors during cancer therapy.
Curr Opin Genet Dev. 18:73–79. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sierra JR, Cepero V and Giordano S:
Molecular mechanisms of acquired resistance to tyrosine kinase
targeted therapy. Mol Cancer. 9:752010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lapidot T, Sirard C, Vormoor J, Murdoch B,
Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and
Dick JE: A cell initiating human acute myeloid leukaemia after
transplantation into SCID mice. Nature. 367:645–648. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ,
Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer
stem cells - perspectives on current status and future directions:
AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
OBrien CA, Pollett A, Gallinger S and Dick
JE: A human colon cancer cell capable of initiating tumour growth
in immunodeficient mice. Nature. 445:106–110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ricci-Vitiani L, Lombardi DG, Pilozzi E,
Biffoni M, Todaro M, Peschle C and De Maria R: Identification and
expansion of human colon-cancer-initiating cells. Nature.
445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen J, Li Y, Yu TS, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ghiaur G, Gerber J and Jones RJ: Concise
review: Cancer stem cells and minimal residual disease. Stem Cells.
30:89–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Maeda S, Shinchi H, Kurahara H, Mataki Y,
Maemura K, Sato M, Natsugoe S, Aikou T and Takao S: CD133
expression is correlated with lymph node metastasis and vascular
endothelial growth factor-C expression in pancreatic cancer. Br J
Cancer. 98:1389–1397. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Vogler T, Kriegl L, Horst D, Engel J,
Sagebiel S, Schäffauer AJ, Kirchner T and Jung A: The expression
pattern of aldehyde dehydrogenase 1 (ALDH1) is an independent
prognostic marker for low survival in colorectal tumors. Exp Mol
Pathol. 92:111–117. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zeppernick F, Ahmadi R, Campos B, Dictus
C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B and
Herold-Mende CC: Stem cell marker CD133 affects clinical outcome in
glioma patients. Clin Cancer Res. 14:123–129. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rong S, Segal S, Anver M, Resau JH and
Woude GF Vande: Invasiveness and metastasis of NIH 3T3 cells
induced by Met-hepatocyte growth factor/scatter factor autocrine
stimulation. Proc Natl Acad Sci USA. 91:4731–4735. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tokunou M, Niki T, Eguchi K, Iba S, Tsuda
H, Yamada T, Matsuno Y, Kondo H, Saitoh Y, Imamura H, et al: c-MET
expression in myofibroblasts: Role in autocrine activation and
prognostic significance in lung adenocarcinoma. Am J Pathol.
158:1451–1463. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tsao MS, Liu N, Chen JR, Pappas J, Ho J,
To C, Viallet J, Park M and Zhu H: Differential expression of
Met/hepatocyte growth factor receptor in subtypes of non-small cell
lung cancers. Lung Cancer. 20:1–16. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Olivero M, Rizzo M, Madeddu R, Casadio C,
Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG,
et al: Overexpression and activation of hepatocyte growth
factor/scatter factor in human non-small-cell lung carcinomas. Br J
Cancer. 74:1862–1868. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lengyel E, Prechtel D, Resau JH, Gauger K,
Welk A, Lindemann K, Salanti G, Richter T, Knudsen B, Woude GF
Vande, et al: C-Met overexpression in node-positive breast cancer
identifies patients with poor clinical outcome independent of
Her2/neu. Int J Cancer. 113:678–682. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Di Renzo MF, Olivero M, Katsaros D,
Crepaldi T, Gaglia P, Zola P, Sismondi P and Comoglio PM:
Overexpression of the Met/HGF receptor in ovarian cancer. Int J
Cancer. 58:658–662. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Di Renzo MF, Olivero M, Giacomini A, Porte
H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S,
Giordano S, et al: Overexpression and amplification of the met/HGF
receptor gene during the progression of colorectal cancer. Clin
Cancer Res. 1:147–154. 1995.PubMed/NCBI
|
|
34
|
Natali PG, Prat M, Nicotra MR, Bigotti A,
Olivero M, Comoglio PM and Di Renzo MF: Overexpression of the
met/HGF receptor in renal cell carcinomas. Int J Cancer.
69:212–217. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Schmidt L, Duh FM, Chen F, Kishida T,
Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, et al:
Germline and somatic mutations in the tyrosine kinase domain of the
MET proto-oncogene in papillary renal carcinomas. Nat Genet.
16:68–73. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Knowles LM, Stabile LP, Egloff AM,
Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki
S, Quesnelle KM, et al: HGF and c-Met participate in paracrine
tumorigenic pathways in head and neck squamous cell cancer. Clin
Cancer Res. 15:3740–3750. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ramirez R, Hsu D, Patel A, Fenton C,
Dinauer C, Tuttle RM and Francis GL: Over-expression of hepatocyte
growth factor/scatter factor (HGF/SF) and the HGF/SF receptor
(cMET) are associated with a high risk of metastasis and recurrence
for children and young adults with papillary thyroid carcinoma.
Clin Endocrinol (Oxf). 53:635–644. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Soman NR, Correa P, Ruiz BA and Wogan GN:
The TPR-MET oncogenic rearrangement is present and expressed in
human gastric carcinoma and precursor lesions. Proc Natl Acad Sci
USA. 88:4892–4896. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Koochekpour S, Jeffers M, Rulong S, Taylor
G, Klineberg E, Hudson EA, Resau JH and Woude GF Vande: Met and
hepatocyte growth factor/scatter factor expression in human
gliomas. Cancer Res. 57:5391–5398. 1997.PubMed/NCBI
|
|
40
|
Ferracini R, Di Renzo MF, Scotlandi K,
Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M and
Comoglio PM: The Met/HGF receptor is over-expressed in human
osteosarcomas and is activated by either a paracrine or an
autocrine circuit. Oncogene. 12:1697–1705. 1996.PubMed/NCBI
|
|
41
|
Di Renzo MF, Poulsom R, Olivero M,
Comoglio PM and Lemoine NR: Expression of the Met/hepatocyte growth
factor receptor in human pancreatic cancer. Cancer Res.
55:1129–1138. 1995.PubMed/NCBI
|
|
42
|
Ma PC, Tretiakova MS, MacKinnon AC,
Ramnath N, Johnson C, Dietrich S, Seiwert T, Christensen JG,
Jagadeeswaran R, Krausz T, et al: Expression and mutational
analysis of MET in human solid cancers. Genes Chromosomes Cancer.
47:1025–1037. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zeng ZS, Weiser MR, Kuntz E, Chen CT, Khan
SA, Forslund A, Nash GM, Gimbel M, Yamaguchi Y, Culliford AT IV, et
al: c-Met gene amplification is associated with advanced stage
colorectal cancer and liver metastases. Cancer Lett. 265:258–269.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tsugawa K, Yonemura Y, Hirono Y, Fushida
S, Kaji M, Miwa K, Miyazaki I and Yamamoto H: Amplification of the
c-met, c-erbB-2 and epidermal growth factor receptor gene in human
gastric cancers: Correlation to clinical features. Oncology.
55:475–481. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Di Renzo MF, Olivero M, Martone T, Maffe
A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G and
Comoglio PM: Somatic mutations of the MET oncogene are selected
during metastatic spread of human HNSC carcinomas. Oncogene.
19:1547–1555. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pennacchietti S, Michieli P, Galluzzo M,
Mazzone M, Giordano S and Comoglio PM: Hypoxia promotes invasive
growth by transcriptional activation of the met protooncogene.
Cancer Cell. 3:347–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu
Kang B, Kang YJ, Lathia JD, Cheong KH, Song PH, et al: MET
signaling regulates glioblastoma stem cells. Cancer Res.
72:3828–3838. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:5821–5828.
2003.PubMed/NCBI
|
|
49
|
Bidlingmaier S, Zhu X and Liu B: The
utility and limitations of glycosylated human CD133 epitopes in
defining cancer stem cells. J Mol Med (Berl). 86:1025–1032. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Comoglio PM, Giordano S and Trusolino L:
Drug development of MET inhibitors: Targeting oncogene addiction
and expedience. Nat Rev Drug Discov. 7:504–516. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Benvenuti S, Lazzari L, Arnesano A, Li
Chiavi G, Gentile A and Comoglio PM: Ron kinase
transphosphorylation sustains MET oncogene addiction. Cancer Res.
71:1945–1955. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Boccaccio C and Comoglio PM: The MET
oncogene in glioblastoma stem cells: Implications as a diagnostic
marker and a therapeutic target. Cancer Res. 73:3193–3199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Corso S, Migliore C, Ghiso E, De Rosa G,
Comoglio PM and Giordano S: Silencing the MET oncogene leads to
regression of experimental tumors and metastases. Oncogene.
27:684–693. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lennerz JK, Kwak EL, Ackerman A, Michael
M, Fox SB, Bergethon K, Lauwers GY, Christensen JG, Wilner KD,
Haber DA, et al: MET amplification identifies a small and
aggressive subgroup of esophagogastric adenocarcinoma with evidence
of responsiveness to crizotinib. J Clin Oncol. 29:4803–4810. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lutterbach B, Zeng Q, Davis LJ, Hatch H,
Hang G, Kohl NE, Gibbs JB and Pan BS: Lung cancer cell lines
harboring MET gene amplification are dependent on Met for growth
and survival. Cancer Res. 67:2081–2088. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Smolen GA, Sordella R, Muir B, Mohapatra
G, Barmettler A, Archibald H, Kim WJ, Okimoto RA, Bell DW, Sgroi
DC, et al: Amplification of MET may identify a subset of cancers
with extreme sensitivity to the selective tyrosine kinase inhibitor
PHA-665752. Proc Natl Acad Sci USA. 103:2316–2321. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
De Bacco F, Luraghi P, Medico E, Reato G,
Girolami F, Perera T, Gabriele P, Comoglio PM and Boccaccio C:
Induction of MET by ionizing radiation and its role in
radioresistance and invasive growth of cancer. J Natl Cancer Inst.
103:645–661. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Matsui S, Osada S, Tomita H, Komori S,
Mori R, Sanada Y, Takahashi T, Yamaguchi K and Yoshida K: Clinical
significance of aggressive hepatectomy for colorectal liver
metastasis, evaluated from the HGF/c-Met pathway. Int J Oncol.
37:289–297. 2010.PubMed/NCBI
|
|
59
|
Navab R, Liu J, Seiden-Long I, Shih W, Li
M, Bandarchi B, Chen Y, Lau D, Zu YF, Cescon D, et al:
Co-overexpression of Met and hepatocyte growth factor promotes
systemic metastasis in NCI-H460 non-small cell lung carcinoma
cells. Neoplasia. 11:1292–1300. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cai YR, Zhang HQ, Qu Y, Mu J, Zhao D, Zhou
LJ, Yan H, Ye JW and Liu Y: Expression of MET and SOX2 genes in
non-small cell lung carcinoma with EGFR mutation. Oncol Rep.
26:877–885. 2011.PubMed/NCBI
|
|
61
|
Masuya D, Huang C, Liu D, Nakashima T,
Kameyama K, Haba R, Ueno M and Yokomise H: The tumour-stromal
interaction between intratumoral c-Met and stromal hepatocyte
growth factor associated with tumour growth and prognosis in
non-small-cell lung cancer patients. Br J Cancer. 90:1555–1562.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ghoussoub RA, Dillon DA, DAquila T, Rimm
EB, Fearon ER and Rimm DL: Expression of c-met is a strong
independent prognostic factor in breast carcinoma. Cancer.
82:1513–1520. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Qian CN, Guo X, Cao B, Kort EJ, Lee CC,
Chen J, Wang LM, Mai WY, Min HQ, Hong MH, et al: Met protein
expression level correlates with survival in patients with
late-stage nasopharyngeal carcinoma. Cancer Res. 62:589–596.
2002.PubMed/NCBI
|
|
64
|
Nakajima M, Sawada H, Yamada Y, Watanabe
A, Tatsumi M, Yamashita J, Matsuda M, Sakaguchi T, Hirao T and
Nakano H: The prognostic significance of amplification and
overexpression of c-met and c-erb B-2 in human gastric carcinomas.
Cancer. 85:1894–1902. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sawada K, Radjabi AR, Shinomiya N, Kistner
E, Kenny H, Becker AR, Turkyilmaz MA, Salgia R, Yamada SD, Woude GF
Vande, et al: c-Met overexpression is a prognostic factor in
ovarian cancer and an effective target for inhibition of peritoneal
dissemination and invasion. Cancer Res. 67:1670–1679. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gibney GT, Aziz SA, Camp RL, Conrad P,
Schwartz BE, Chen CR, Kelly WK and Kluger HM: c-Met is a prognostic
marker and potential therapeutic target in clear cell renal cell
carcinoma. Ann Oncol. 24:343–349. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nabeshima K, Shimao Y, Sato S, Kataoka H,
Moriyama T, Kawano H, Wakisaka S and Koono M: Expression of c-Met
correlates with grade of malignancy in human astrocytic tumours: An
immunohistochemical study. Histopathology. 31:436–443. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kong DS, Song SY, Kim DH, Joo KM, Yoo JS,
Koh JS, Dong SM, Suh YL, Lee JI, Park K, et al: Prognostic
significance of c-Met expression in glioblastomas. Cancer.
115:140–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Takeuchi H, Bilchik A, Saha S, Turner R,
Wiese D, Tanaka M, Kuo C, Wang HJ and Hoon DS: c-MET expression
level in primary colon cancer: A predictor of tumor invasion and
lymph node metastases. Clin Cancer Res. 9:1480–1488.
2003.PubMed/NCBI
|
|
70
|
Refaat T, Donnelly ED, Sachdev S, Parimi
V, El Achy S, Dalal P, Farouk M, Berg N, Helenowski I, Gross JP, et
al: c-Met overexpression in cervical cancer, a prognostic factor
and a potential molecular therapeutic target. Am J Clin Oncol. Jun
10–2015.(Epub ahead of print). View Article : Google Scholar
|
|
71
|
Rocci A, Gambella M, Aschero S, Baldi I,
Trusolino L, Cavallo F, Gay F, Larocca A, Magarotto V, Omedè P, et
al: MET dysregulation is a hallmark of aggressive disease in
multiple myeloma patients. Br J Haematol. 164:841–850. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Baccelli I, Stenzinger A, Vogel V,
Pfitzner BM, Klein C, Wallwiener M, Scharpff M, Saini M,
Holland-Letz T, Sinn HP, et al: Co-expression of MET and CD47 is a
novel prognosticator for survival of luminal breast cancer
patients. Oncotarget. 5:8147–8160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Edakuni G, Sasatomi E, Satoh T, Tokunaga O
and Miyazaki K: Expression of the hepatocyte growth factor/c-Met
pathway is increased at the cancer front in breast carcinoma.
Pathol Int. 51:172–178. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cepero V, Sierra JR, Corso S, Ghiso E,
Casorzo L, Perera T, Comoglio PM and Giordano S: MET and KRAS gene
amplification mediates acquired resistance to MET tyrosine kinase
inhibitors. Cancer Res. 70:7580–7590. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Qi J, McTigue MA, Rogers A, Lifshits E,
Christensen JG, Jänne PA and Engelman JA: Multiple mutations and
bypass mechanisms can contribute to development of acquired
resistance to MET inhibitors. Cancer Res. 71:1081–1091. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Corso S, Ghiso E, Cepero V, Sierra JR,
Migliore C, Bertotti A, Trusolino L, Comoglio PM and Giordano S:
Activation of HER family members in gastric carcinoma cells
mediates resistance to MET inhibition. Mol Cancer. 9:1212010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
McDermott U, Pusapati RV, Christensen JG,
Gray NS and Settleman J: Acquired resistance of non-small cell lung
cancer cells to MET kinase inhibition is mediated by a switch to
epidermal growth factor receptor dependency. Cancer Res.
70:1625–1634. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Martin V, Corso S, Comoglio PM and
Giordano S: Increase of MET gene copy number confers resistance to
a monovalent MET antibody and establishes drug dependence. Mol
Oncol. 8:1561–1574. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Engelman JA, Zejnullahu K, Mitsudomi T,
Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen
J, et al: MET amplification leads to gefitinib resistance in lung
cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bean J, Brennan C, Shih JY, Riely G, Viale
A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, et al: MET
amplification occurs with or without T790M mutations in EGFR mutant
lung tumors with acquired resistance to gefitinib or erlotinib.
Proc Natl Acad Sci USA. 104:20932–20937. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shattuck DL, Miller JK, Carraway KL III
and Sweeney C: Met receptor contributes to trastuzumab resistance
of Her2-overexpressing breast cancer cells. Cancer Res.
68:1471–1477. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shojaei F, Lee JH, Simmons BH, Wong A,
Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD and
Christensen JG: HGF/c-Met acts as an alternative angiogenic pathway
in sunitinib-resistant tumors. Cancer Res. 70:10090–10100. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ciamporcero E, Miles KM, Adelaiye R,
Ramakrishnan S, Shen L, Ku S, Pizzimenti S, Sennino B, Barrera G
and Pili R: Combination strategy targeting VEGF and HGF/c-met in
human renal cell carcinoma models. Mol Cancer Ther. 14:101–110.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Teng C, Guo Y, Zhang H, Zhang H, Ding M
and Deng H: Identification and characterization of label-retaining
cells in mouse pancreas. Differentiation. 75:702–712. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Oshima Y, Suzuki A, Kawashimo K, Ishikawa
M, Ohkohchi N and Taniguchi H: Isolation of mouse pancreatic ductal
progenitor cells expressing CD133 and c-Met by flow cytometric cell
sorting. Gastroenterology. 132:720–732. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kamiya A, Gonzalez FJ and Nakauchi H:
Identification and differentiation of hepatic stem cells during
liver development. Front Biosci. 11:1302–1310. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ishikawa T, Factor VM, Marquardt JU, Raggi
C, Seo D, Kitade M, Conner EA and Thorgeirsson SS: Hepatocyte
growth factor/c-met signaling is required for stem-cell-mediated
liver regeneration in mice. Hepatology. 55:1215–1226. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Urbanek K, Rota M, Cascapera S, Bearzi C,
Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana
F, et al: Cardiac stem cells possess growth factor-receptor systems
that after activation regenerate the infarcted myocardium,
improving ventricular function and long-term survival. Circ Res.
97:663–673. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chmielowiec J, Borowiak M, Morkel M,
Stradal T, Munz B, Werner S, Wehland J, Birchmeier C and Birchmeier
W: c-Met is essential for wound healing in the skin. J Cell Biol.
177:151–162. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Nicoleau C, Benzakour O, Agasse F, Thiriet
N, Petit J, Prestoz L, Roger M, Jaber M and Coronas V: Endogenous
hepatocyte growth factor is a niche signal for subventricular zone
neural stem cell amplification and self-renewal. Stem Cells.
27:408–419. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
De Bacco F, Casanova E, Medico E,
Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, DAmbrosio A,
Porrati P, et al: The MET oncogene is a functional marker of a
glioblastoma stem cell subtype. Cancer Res. 72:4537–4550. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Y, Li A, Glas M, Lal B, Ying M, Sang Y,
Xia S, Trageser D, Guerrero-Cázares H, Eberhart CG, et al: c-Met
signaling induces a reprogramming network and supports the
glioblastoma stem-like phenotype. Proc Natl Acad Sci USA.
108:9951–9956. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Snuderl M, Fazlollahi L, Le LP, Nitta M,
Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD,
Betensky RA, et al: Mosaic amplification of multiple receptor
tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Szerlip NJ, Pedraza A, Chakravarty D, Azim
M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et
al: Intratumoral heterogeneity of receptor tyrosine kinases EGFR
and PDGFRA amplification in glioblastoma defines subpopulations
with distinct growth factor response. Proc Natl Acad Sci USA.
109:3041–3046. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li C, Wu JJ, Hynes M, Dosch J, Sarkar B,
Welling TH, di Magliano M Pasca and Simeone DM: c-Met is a marker
of pancreatic cancer stem cells and therapeutic target.
Gastroenterology. 141:2218–2227.e5. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sun S and Wang Z: Head neck squamous cell
carcinoma c-Met+ cells display cancer stem cell
properties and are responsible for cisplatin-resistance and
metastasis. Int J Cancer. 129:2337–2348. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
van Leenders GJ, Sookhlall R, Teubel WJ,
de Ridder CM, Reneman S, Sacchetti A, Vissers KJ, van Weerden W and
Jenster G: Activation of c-MET induces a stem-like phenotype in
human prostate cancer. PLoS One. 6:e267532011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gastaldi S, Sassi F, Accornero P, Torti D,
Galimi F, Migliardi G, Molyneux G, Perera T, Comoglio PM, Boccaccio
C, et al: Met signaling regulates growth, repopulating potential
and basal cell-fate commitment of mammary luminal progenitors:
Implications for basal-like breast cancer. Oncogene. 32:1428–1440.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Miekus K, Lukasiewicz E, Jarocha D, Sekula
M, Drabik G and Majka M: The decreased metastatic potential of
rhabdomyosarcoma cells obtained through MET receptor downregulation
and the induction of differentiation. Cell Death Dis. 4:e4592013.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Skrzypek K, Kusienicka A, Szewczyk B,
Adamus T, Lukasiewicz E, Miekus K and Majka M: Constitutive
activation of MET signaling impairs myogenic differentiation of
rhabdomyosarcoma and promotes its development and progression.
Oncotarget. 6:31378–31398. 2015.PubMed/NCBI
|
|
101
|
Miekus K, Pawlowska M, Sekuła M, Drabik G,
Madeja Z, Adamek D and Majka M: MET receptor is a potential
therapeutic target in high grade cervical cancer. Oncotarget.
6:10086–10101. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jun HJ, Bronson RT and Charest A:
Inhibition of EGFR induces a c-MET-driven stem cell population in
glioblastoma. Stem Cells. 32:338–348. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hage C, Rausch V, Giese N, Giese T,
Schönsiegel F, Labsch S, Nwaeburu C, Mattern J, Gladkich J and Herr
I: The novel c-Met inhibitor cabozantinib overcomes gemcitabine
resistance and stem cell signaling in pancreatic cancer. Cell Death
Dis. 4:e6272013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zlotnik A, Burkhardt AM and Homey B:
Homeostatic chemokine receptors and organ-specific metastasis. Nat
Rev Immunol. 11:597–606. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Phillips TM, McBride WH and Pajonk F: The
response of CD24−/low/CD44+ breast
cancer-initiating cells to radiation. J Natl Cancer Inst.
98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Martin TA and Jiang WG: Evaluation of the
expression of stem cell markers in human breast cancer reveals a
correlation with clinical progression and metastatic disease in
ductal carcinoma. Oncol Rep. 31:262–272. 2014.PubMed/NCBI
|
|
110
|
Bardelli A, Corso S, Bertotti A, Hobor S,
Valtorta E, Siravegna G, Sartore-Bianchi A, Scala E, Cassingena A,
Zecchin D, et al: Amplification of the MET receptor drives
resistance to anti-EGFR therapies in colorectal cancer. Cancer
Discov. 3:658–673. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Turke AB, Zejnullahu K, Wu YL, Song Y,
Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L,
et al: Preexistence and clonal selection of MET amplification in
EGFR mutant NSCLC. Cancer Cell. 17:77–88. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yano S, Wang W, Li Q, Matsumoto K,
Sakurama H, Nakamura T, Ogino H, Kakiuchi S, Hanibuchi M, Nishioka
Y, et al: Hepatocyte growth factor induces gefitinib resistance of
lung adenocarcinoma with epidermal growth factor
receptor-activating mutations. Cancer Res. 68:9479–9487. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wilson TR, Fridlyand J, Yan Y, Penuel E,
Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, et al:
Widespread potential for growth-factor-driven resistance to
anticancer kinase inhibitors. Nature. 487:505–509. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Straussman R, Morikawa T, Shee K,
Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J,
Frederick DT, et al: Tumour micro-environment elicits innate
resistance to RAF inhibitors through HGF secretion. Nature.
487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Luraghi P, Reato G, Cipriano E, Sassi F,
Orzan F, Bigatto V, De Bacco F, Menietti E, Han M, Rideout WM III,
et al: MET signaling in colon cancer stem-like cells blunts the
therapeutic response to EGFR inhibitors. Cancer Res. 74:1857–1869.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Vermeulen L, De Sousa E, Melo F, van der
Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M,
Merz C, Rodermond H, et al: Wnt activity defines colon cancer stem
cells and is regulated by the microenvironment. Nat Cell Biol.
12:468–476. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim KH, Seol HJ, Kim EH, Rheey J, Jin HJ,
Lee Y, Joo KM, Lee J and Nam DH: Wnt/β-catenin signaling is a key
downstream mediator of MET signaling in glioblastoma stem cells.
Neuro Oncol. 15:161–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hashida S, Yamamoto H, Shien K, Miyoshi Y,
Ohtsuka T, Suzawa K, Watanabe M, Maki Y, Soh J, Asano H, et al:
Acquisition of cancer stem cell-like properties in non-small cell
lung cancer with acquired resistance to afatinib. Cancer Sci.
106:1377–1384. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sugano T, Seike M, Noro R, Soeno C, Chiba
M, Zou F, Nakamichi S, Nishijima N, Matsumoto M, Miyanaga A, et al:
Inhibition of ABCB1 overcomes cancer stem cell-like properties and
acquired resistance to MET inhibitors in non-small cell lung
cancer. Mol Cancer Ther. 14:2433–2440. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Figlin RA, Kaufmann I and Brechbiel J:
Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: New
strategies for overcoming resistance to VEGFR and mTORC1
inhibitors. Int J Cancer. 133:788–796. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Weinstein IB: Cancer. Addiction to
oncogenes - the Achilles heal of cancer. Science. 297:63–64. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sharma SV and Settleman J: Oncogene
addiction: Setting the stage for molecularly targeted cancer
therapy. Genes Dev. 21:3214–3231. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Viedma-Rodríguez R, Baiza-Gutman L,
Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G,
Esparza-Garrido R Ruiz, Velázquez-Flores MA and Arenas-Aranda D:
Mechanisms associated with resistance to tamoxifen in estrogen
receptor-positive breast cancer (Review). Oncol Rep. 32:3–15.
2014.PubMed/NCBI
|