|
1
|
Søndergaard KL, Hilton DA, Penney M,
Ollerenshaw M and Demaine AG: Expression of hypoxia-inducible
factor 1α in tumours of patients with glioblastoma. Neuropathol
Appl Neurobiol. 28:210–217. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Solaini G, Baracca A, Lenaz G and Sgarbi
G: Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys
Acta. 1797:1171–1177. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl
Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jewell UR, Kvietikova I, Scheid A, Bauer
C, Wenger RH and Gassmann M: Induction of HIF-1alpha in response to
hypoxia is instantaneous. FASEB J. 15:1312–1314. 2001.PubMed/NCBI
|
|
5
|
Huang LE, Gu J, Schau M and Bunn HF:
Regulation of hypoxia-inducible factor 1alpha is mediated by an
O2-dependent degradation domain via the
ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 95:7987–7992.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Salceda S and Caro J: Hypoxia-inducible
factor 1alpha (HIF-1alpha) protein is rapidly degraded by the
ubiquitin-proteasome system under normoxic conditions. Its
stabilization by hypoxia depends on redox-induced changes. J Biol
Chem. 272:22642–22647. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Majmundar AJ, Wong WJ and Simon MC:
Hypoxia-inducible factors and the response to hypoxic stress. Mol
Cell. 40:294–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Papandreou I, Cairns RA, Fontana L, Lim AL
and Denko NC: HIF-1 mediates adaptation to hypoxia by actively
downregulating mitochondrial oxygen consumption. Cell Metab.
3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rankin EB and Giaccia AJ: The role of
hypoxia-inducible factors in tumorigenesis. Cell Death Differ.
15:678–685. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zundel W, Schindler C, Haas-Kogan D, Koong
A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson
AB, et al: Loss of PTEN facilitates HIF-1-mediated gene expression.
Genes Dev. 14:391–396. 2000.PubMed/NCBI
|
|
11
|
Wang G, Wang J, Zhao H, Wang J and To SS
Tony: The role of Myc and let-7a in glioblastoma, glucose
metabolism and response to therapy. Arch Biochem Biophys.
580:84–92. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li J, Zhu S, Tong J, Hao H, Yang J, Liu Z
and Wang Y: Suppression of lactate dehydrogenase A compromises
tumor progression by downregulation of the Warburg effect in
glioblastoma. Neuroreport. 27:110–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Özcan E and Çakır T: Reconstructed
metabolic network models predict flux-level metabolic reprogramming
in glioblastoma. Front Neurosci. 10:1562016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wu J, Liu Y, Cho K, Dong X, Teng L, Han D,
Liu H, Chen X, Chen X, Hou X, et al: Downregulation of TRAP1
sensitizes glioblastoma cells to temozolomide chemotherapy through
regulating metabolic reprogramming. Neuroreport. 27:136–144. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yuen CA, Asuthkar S, Guda MR, Tsung AJ and
Velpula KK: Cancer stem cell molecular reprogramming of the Warburg
effect in glioblastomas: A new target gleaned from an old concept.
CNS Oncol. 5:101–108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jiang W, Finniss S, Cazacu S, Xiang C,
Brodie Z, Mikkelsen T, Poisson L, Shackelford DB and Brodie C:
Repurposing phenformin for the targeting of glioma stem cells and
the treatment of glioblastoma. Oncotarget. Jul 29–2016.(Epub ahead
of print). doi: 10.18632/oncotarget.10919.
|
|
17
|
Shen H, Hau E, Joshi S, Dilda PJ and
McDonald KL: Sensitization of glioblastoma cells to irradiation by
modulating the glucose metabolism. Mol Cancer Ther. 14:1794–1804.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang W, Wei J, Guo T, Shen Y and Liu F:
Knockdown of miR-210 decreases hypoxic glioma stem cells stemness
and radioresistance. Exp Cell Res. 326:22–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Agrawal R, Pandey P, Jha P, Dwivedi V,
Sarkar C and Kulshreshtha R: Hypoxic signature of microRNAs in
glioblastoma: Insights from small RNA deep sequencing. BMC
Genomics. 15:6862014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Velpula KK, Bhasin A, Asuthkar S and Tsung
AJ: Combined targeting of PDK1 and EGFR triggers regression of
glioblastoma by reversing the Warburg effect. Cancer Res.
73:7277–7289. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nie Q, Guo P, Guo L, Lan J, Lin Y, Guo F,
Zhou S, Ge J, Mao Q, Li X, et al: Overexpression of isocitrate
dehydrogenase-1R123H enhances the proliferation of A172
glioma cells via aerobic glycolysis. Mol Med Rep. 11:3715–3721.
2015.PubMed/NCBI
|
|
22
|
Inukai M, Hara A, Yasui Y, Kumabe T,
Matsumoto T and Saegusa M: Hypoxia-mediated cancer stem cells in
pseudopalisades with activation of hypoxia-inducible factor-1α/Akt
axis in glioblastoma. Hum Pathol. 46:1496–1505. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xu G, Wang M, Xie W and Bai X:
Hypoxia-inducible factor-1 alpha C1772T gene polymorphism and
glioma risk: A hospital-based case-control study from China. Genet
Test Mol Biomarkers. 15:461–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Adams DJ, Waud WR, Wani MC, Manikumar G,
Flowers JL, Driscoll TA and Morgan LR: BACPTDP: A water-soluble
camptothecin pro-drug with enhanced activity in hypoxic/acidic
tumors. Cancer Chemother Pharmacol. 67:855–865. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Florczyk SJ, Wang K, Jana S, Wood DL,
Sytsma SK, Sham JG, Kievit FM and Zhang M: Porous
chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma
microenvironment ECM. Biomaterials. 34:10143–10150. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Maroni P, Matteucci E, Drago L, Banfi G,
Bendinelli P and Desiderio MA: Hypoxia induced E-cadherin involving
regulators of Hippo pathway due to HIF-1α stabilization/nuclear
translocation in bone metastasis from breast carcinoma. Exp Cell
Res. 330:287–299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lv L, Yuan J, Huang T, Zhang C, Zhu Z,
Wang L, Jiang G and Zeng F: Stabilization of Snail by HIF-1α and
TNF-α is required for hypoxia-induced invasion in prostate cancer
PC3 cells. Mol Biol Rep. 41:4573–4582. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mashiko R, Takano S, Ishikawa E, Yamamoto
T, Nakai K and Matsumura A: Hypoxia-inducible factor 1α expression
is a prognostic biomarker in patients with astrocytic tumors
associated with necrosis on MR image. J Neurooncol. 102:43–50.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Birner P, Piribauer M, Fischer I,
Gatterbauer B, Marosi C, Ambros PF, Ambros IM, Bredel M, Oberhuber
G, Rössler K, et al: Vascular patterns in glioblastoma influence
clinical outcome and associate with variable expression of
angiogenic proteins: Evidence for distinct angiogenic subtypes.
Brain Pathol. 13:133–143. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Flynn JR, Wang L, Gillespie DL, Stoddard
GJ, Reid JK, Owens J, Ellsworth GB, Salzman KL, Kinney AY and
Jensen RL: Hypoxia-regulated protein expression, patient
characteristics, and preoperative imaging as predictors of survival
in adults with glioblastoma multiforme. Cancer. 113:1032–1042.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yuan G, Yan SF, Xue H, Zhang P, Sun JT and
Li G: Cucurbitacin I induces protective autophagy in glioblastoma
in vitro and in vivo. J Biol Chem. 289:10607–10619. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yang YT, Ju TC and Yang DI: Induction of
hypoxia inducible factor-1 attenuates metabolic insults induced by
3-nitropropionic acid in rat C6 glioma cells. J Neurochem.
93:513–525. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang
YJ, Zhao L, Chen FH, Wang XT, You QD, et al: HIF-1α is critical for
hypoxia-mediated maintenance of glioblastoma stem cells by
activating Notch signaling pathway. Cell Death Differ. 19:284–294.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gammoh N, Fraser J, Puente C, Syred HM,
Kang H, Ozawa T, Lam D, Acosta JC, Finch AJ, Holland E, et al:
Suppression of autophagy impedes glioblastoma development and
induces senescence. Autophagy. 12:1431–1439. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Maugeri G, D'Amico A Grazia, Reitano R,
Magro G, Cavallaro S, Salomone S and D'Agata V: PACAP and VIP
inhibit the invasiveness of glioblastoma cells exposed to hypoxia
through the regulation of HIFs and EGFR expression. Front
Pharmacol. 7:1392016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li J, Ke Y, Huang M, Huang S and Liang Y:
Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry
of hypoxic human glioma cells. Exp Ther Med. 9:977–981.
2015.PubMed/NCBI
|
|
37
|
Lin H, Patel S, Affleck VS, Wilson I,
Turnbull DM, Joshi AR, Maxwell R and Stoll EA: Fatty acid oxidation
is required for the respiration and proliferation of malignant
glioma cells. Neuro Oncol. Jun 29–2016.(Epub ahead of print). pii:
now128.
|
|
38
|
Han D, Wei W, Chen X, Zhang Y, Wang Y,
Zhang J, Wang X, Yu T, Hu Q, Liu N, et al: NF-κB/RelA-PKM2 mediates
inhibition of glycolysis by fenofibrate in glioblastoma cells.
Oncotarget. 6:26119–26128. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Womeldorff M, Gillespie D and Jensen RL:
Hypoxia-inducible factor-1 and associated upstream and downstream
proteins in the pathophysiology and management of glioblastoma.
Neurosurg Focus. 37:E82014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xie Q, Bao X, Chen ZH, Xu Y, Keep RF,
Muraszko KM, Xi G and Hua Y: Role of protease-activated receptor-1
in glioma growth. Acta Neurochir. (Suppl 121). S355–S360. 2016.
|
|
41
|
Ahmad F, Dixit D, Joshi SD and Sen E: G9a
inhibition induced PKM2 regulates autophagic responses. Int J
Biochem Cell Biol. 78:87–95. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Okamoto K, Ito D, Miyazaki K, Watanabe S,
Tohyama O, Yokoi A, Ozawa Y, Asano M, Kawamura T, Yamane Y, et al:
Microregional antitumor activity of a small-molecule
hypoxia-inducible factor 1 inhibitor. Int J Mol Med. 29:541–549.
2012.PubMed/NCBI
|
|
43
|
Wei J, Wu A, Kong LY, Wang Y, Fuller G,
Fokt I, Melillo G, Priebe W and Heimberger AB: Hypoxia potentiates
glioma-mediated immunosuppression. PLoS One. 6:e161952011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kucharzewska P, Christianson HC, Welch JE,
Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain
E, Bengzon J and Belting M: Exosomes reflect the hypoxic status of
glioma cells and mediate hypoxia-dependent activation of vascular
cells during tumor development. Proc Natl Acad Sci USA.
110:7312–7317. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pore N, Jiang Z, Shu HK, Bernhard E, Kao
GD and Maity A: Akt1 activation can augment hypoxia-inducible
factor-1alpha expression by increasing protein translation through
a mammalian target of rapamycin-independent pathway. Mol Cancer
Res. 4:471–479. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Joshi S, Singh AR and Durden DL: MDM2
regulates hypoxic hypoxia-inducible factor 1α stability in an E3
ligase, proteasome, and PTEN-phosphatidylinositol
3-kinase-AKT-dependent manner. J Biol Chem. 289:22785–22797. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Muh CR, Joshi S, Singh AR, Kesari S,
Durden DL and Makale MT: PTEN status mediates 2ME2 anti-tumor
efficacy in preclinical glioblastoma models: Role of HIF1α
suppression. J Neurooncol. 116:89–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW,
Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, et al: Mitochondrial
dysfunction represses HIF-1α protein synthesis through AMPK
activation in human hepatoma HepG2 cells. Biochim Biophys Acta.
1830:4743–4751. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chae YC, Vaira V, Caino MC, Tang HY, Seo
JH, Kossenkov AV, Ottobrini L, Martelli C, Lucignani G, Bertolini
I, et al: Mitochondrial Akt regulation of hypoxic tumor
reprogramming. Cancer Cell. 30:257–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Razorenova OV, Castellini L, Colavitti R,
Edgington LE, Nicolau M, Huang X, Bedogni B, Mills EM, Bogyo M and
Giaccia AJ: The apoptosis repressor with a CARD domain (ARC) gene
is a direct hypoxia-inducible factor 1 target gene and promotes
survival and proliferation of VHL-deficient renal cancer cells. Mol
Cell Biol. 34:739–751. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lo Dico A, Martelli C, Valtorta S,
Raccagni I, Diceglie C, Belloli S, Gianelli U, Vaira V, Politi LS,
Bosari S, et al: Identification of imaging biomarkers for the
assessment of tumour response to different treatments in a
preclinical glioma model. Eur J Nucl Med Mol Imaging. 42:1093–1105.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Madan E, Dikshit B, Gowda SH, Srivastava
C, Sarkar C, Chattopadhyay P, Sinha S and Chosdol K: FAT1 is a
novel upstream regulator of HIF1α and invasion of high grade
glioma. Int J Cancer. 139:2570–2582. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Minchenko OH, Kharkova AP, Minchenko DO
and Karbovskyi LL: Effect of hypoxia on the expression of genes
that encode some IGFBP and CCN proteins in U87 glioma cells depends
on IRE1 signaling. Ukr Biochem J. 87:52–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hu J and Wang XF: HIF-miR-215-KDM1B
promotes glioma-initiating cell adaptation to hypoxia. Cell Cycle.
15:1939–1940. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan
L, Liu T, Li HR, Wang P, Feng Y, et al: MiR-215 is induced
post-transcriptionally via HIF-Drosha complex and mediates
glioma-initiating cell adaptation to hypoxia by targeting KDM1B.
Cancer Cell. 29:49–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lan J, Xue Y, Chen H, Zhao S, Wu Z, Fang
J, Han C and Lou M: Hypoxia-induced miR-497 decreases glioma cell
sensitivity to TMZ by inhibiting apoptosis. FEBS Lett.
588:3333–3339. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xue H, Guo X, Han X, Yan S, Zhang J, Xu S,
Li T, Guo X, Zhang P, Gao X, et al: MicroRNA-584-3p, a novel tumor
suppressor and prognostic marker, reduces the migration and
invasion of human glioma cells by targeting hypoxia-induced ROCK1.
Oncotarget. 7:4785–4805. 2016.PubMed/NCBI
|
|
58
|
Jensen RL: Brain tumor hypoxia:
Tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a
therapeutic target. J Neurooncol. 92:317–335. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tivnan A and McDonald KL: Current progress
for the use of miRNAs in glioblastoma treatment. Mol Neurobiol.
48:757–768. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kalkan R: Hypoxia is the driving force
behind GBM and could be a new tool in GBM treatment. Crit Rev
Eukaryot Gene Expr. 25:363–369. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Harris AL: Hypoxia - a key regulatory
factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Höckel M and Vaupel P: Tumor hypoxia:
Definitions and current clinical, biologic, and molecular aspects.
J Natl Cancer Inst. 93:266–276. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ruan K, Song G and Ouyang G: Role of
hypoxia in the hallmarks of human cancer. J Cell Biochem.
107:1053–1062. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oliver L, Olivier C, Marhuenda FB, Campone
M and Vallette FM: Hypoxia and the malignant glioma
microenvironment: Regulation and implications for therapy. Curr Mol
Pharmacol. 2:263–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang JH, Ma ZX, Huang GH, Xu QF, Xiang Y,
Li N, Sidlauskas K, Zhang EE and Lv SQ: Downregulation of HIF-1a
sensitizes U251 glioma cells to the temozolomide (TMZ) treatment.
Exp Cell Res. 343:148–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen W, Xiao Z, Zhao Y, Huang L and Du G:
HIF-1α inhibition sensitizes pituitary adenoma cells to
temozolomide by regulating MGMT expression. Oncol Rep.
30:2495–2501. 2013.PubMed/NCBI
|
|
67
|
Winkler F, Kozin SV, Tong RT, Chae SS,
Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E,
et al: Kinetics of vascular normalization by VEGFR2 blockade
governs brain tumor response to radiation: Role of oxygenation,
angiopoietin-1, and matrix metalloproteinases. Cancer Cell.
6:553–563. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wick A, Wick W, Waltenberger J, Weller M,
Dichgans J and Schulz JB: Hypoxic neuroprotection requires
sequential activation of vascular endothelial growth factor
receptor and Akt. J Neurosci. 22:6401–6407. 2002.PubMed/NCBI
|
|
69
|
Henze AT, Riedel J, Diem T, Wenner J,
Flamme I, Pouyseggur J, Plate KH and Acker T: Prolyl hydroxylases 2
and 3 act in gliomas as protective negative feedback regulators of
hypoxia-inducible factors. Cancer Res. 70:357–366. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mancini M, Gariboldi MB, Taiana E, Bonzi
MC, Craparotta I, Pagin M and Monti E: Co-targeting the IGF system
and HIF-1 inhibits migration and invasion by (triple-negative)
breast cancer cells. Br J Cancer. 110:2865–2873. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Onnis B, Rapisarda A and Melillo G:
Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med.
13:2780–2786. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xia Y, Choi HK and Lee K: Recent advances
in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem.
49:24–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huang SW, Kao JK, Wu CY, Wang ST, Lee HC,
Liang SM, Chen YJ and Shieh JJ: Targeting aerobic glycolysis and
HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer
cells. Oncotarget. 5:1363–1381. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dai P, Akimaru H, Tanaka Y, Maekawa T,
Nakafuku M and Ishii S: Sonic Hedgehog-induced activation of the
Gli1 promoter is mediated by GLI3. J Biol Chem. 274:8143–8152.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Regl G, Neill GW, Eichberger T, Kasper M,
Ikram MS, Koller J, Hintner H, Quinn AG, Frischauf AM and Aberger
F: Human GLI2 and GLI1 are part of a positive feedback mechanism in
Basal Cell Carcinoma. Oncogene. 21:5529–5539. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fedorchuk AG, Pyaskovskaya ON, Gorbik GV,
Prokhorova IV, Kolesnik DL and Solyanik GI: Effectiveness of sodium
dichloroacetate against glioma C6 depends on administration
schedule and dosage. Exp Oncol. 38:80–83. 2016.PubMed/NCBI
|
|
77
|
Wang H, Feng H and Zhang Y: Resveratrol
inhibits hypoxia-induced glioma cell migration and invasion by the
p-STAT3/miR-34a axis. Neoplasma. 63:532–539. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li S, Wang J, Wei Y, Liu Y, Ding X, Dong
B, Xu Y and Wang Y: Crucial role of TRPC6 in maintaining the
stability of HIF-1α in glioma cells under hypoxia. J Cell Sci.
128:3317–3329. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Luan W, Wang Y, Chen X, Shi Y, Wang J,
Zhang J, Qian J, Li R, Tao T, Wei W, et al: PKM2 promotes glucose
metabolism and cell growth in gliomas through a mechanism involving
a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 6:13006–13018.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wan YY, Zhang JF, Yang ZJ, Jiang LP, Wei
YF, Lai QN, Wang JB, Xin HB and Han XJ: Involvement of Drp1 in
hypoxia-induced migration of human glioblastoma U251 cells. Oncol.
32:619–626. 2014.
|
|
81
|
Adamski J, Price A, Dive C and Makin G:
Hypoxia-induced cytotoxic drug resistance in osteosarcoma is
independent of HIF-1Alpha. PLoS One. 8:e653042013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cook KM, Hilton ST, Mecinovic J,
Motherwell WB, Figg WD and Schofield CJ: Epidithiodiketopiperazines
block the interaction between hypoxia-inducible factor-1alpha
(HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem.
284:26831–26838. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Maples KR, Green AR and Floyd RA:
Nitrone-related therapeutics: Potential of NXY-059 for the
treatment of acute ischaemic stroke. CNS Drugs. 18:1071–1084. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gillespie DL, Whang K, Ragel BT, Flynn JR,
Kelly DA and Jensen RL: Silencing of hypoxia inducible
factor-1alpha by RNA interference attenuates human glioma cell
growth in vivo. Clin Cancer Res. 13:2441–2448. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sydserff SG, Borelli AR, Green AR and
Cross AJ: Effect of NXY-059 on infarct volume after transient or
permanent middle cerebral artery occlusion in the rat; studies on
dose, plasma concentration and therapeutic time window. Br J
Pharmacol. 135:103–112. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hashizume R, Ozawa T, Dinca EB, Banerjee
A, Prados MD, James CD and Gupta N: A human brainstem glioma
xenograft model enabled for bioluminescence imaging. J Neurooncol.
96:151–159. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
de Souza PC, Smith N, Pody R, He T, Njoku
C, Silasi-Mansat R, Lupu F, Meek B, Chen H, Dong Y, et al: OKN-007
decreases VEGFR-2 levels in a preclinical GL261 mouse glioma model.
Am J Nucl Med Mol Imaging. 5:363–378. 2015.PubMed/NCBI
|
|
88
|
Bourne DW: BOOMER, a simulation and
modeling program for pharmacokinetic and pharmacodynamic data
analysis. Comput Methods Programs Biomed. 29:191–195. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yamaoka K, Nakagawa T and Uno T:
Application of Akaike's information criterion (AIC) in the
evaluation of linear pharmacokinetic equations. J Pharmacokinet
Biopharm. 6:165–175. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
de Souza P Coutinho, Mallory S, Smith N,
Saunders D, Li XN, McNall-Knapp RY, Fung KM and Towner RA:
Inhibition of pediatric glioblastoma tumor growth by the
anti-cancer agent OKN-007 in orthotopic mouse xenografts. PLoS One.
10:e01342762015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu D, Cao G, Cen Y, Liu T, Peng W, Sun J,
Li X and Zhou H: The radiosensitizing effect of CpG ODN107 on human
glioma cells is tightly related to its antiangiogenic activity via
suppression of HIF-1α/VEGF pathway. Int Immunopharmacol.
17:237–244. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wellmann S, Bettkober M, Zelmer A, Seeger
K, Faigle M, Eltzschig HK and Bührer C: Hypoxia upregulates the
histone demethylase JMJD1A via HIF-1. Biochem Biophys Res Commun.
372:892–897. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Belozerov VE and Van Meir EG: Hypoxia
inducible factor-1: A novel target for cancer therapy. Anticancer
Drugs. 16:901–909. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Melillo G: Inhibiting hypoxia-inducible
factor 1 for cancer therapy. Mol Cancer Res. 4:601–605. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Semenza GL: Evaluation of HIF-1 inhibitors
as anticancer agents. Drug Discov Today. 12:853–859. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lee P, Murphy B, Miller R, Menon V, Banik
NL, Giglio P, Lindhorst SM, Varma AK, Vandergrift WA III, Patel SJ,
et al: Mechanisms and clinical significance of histone deacetylase
inhibitors: Epigenetic glioblastoma therapy. Anticancer Res.
35:615–625. 2015.PubMed/NCBI
|
|
97
|
Qian DZ, Wang X, Kachhap SK, Kato Y, Wei
Y, Zhang L, Atadja P and Pili R: The histone deacetylase inhibitor
NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect
in combination with the vascular endothelial growth factor receptor
tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res.
64:6626–6634. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kerbel RS: Tumor angiogenesis. N Engl J
Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Moeini A, Cornellà H and Villanueva A:
Emerging signaling pathways in hepatocellular carcinoma. Liver
Cancer. 1:83–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
von Burstin J, Eser S, Paul MC, Seidler B,
Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, et
al: E-cadherin regulates metastasis of pancreatic cancer in vivo
and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex.
Gastroenterology. 137:361–371, 371.e1–371.e5. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Falkenberg KJ and Johnstone RW: Histone
deacetylases and their inhibitors in cancer, neurological diseases
and immune disorders. Nat Rev Drug Discov. 13:673–691. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Singh MM, Johnson B, Venkatarayan A,
Flores ER, Zhang J, Su X, Barton M, Lang F and Chandra J:
Preclinical activity of combined HDAC and KDM1A inhibition in
glioblastoma. Neuro Oncol. 17:1463–1473. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Scroggins BT, Robzyk K, Wang D, Marcu MG,
Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D and Karnitz L: An
acetylation site in the middle domain of Hsp90 regulates chaperone
function. Mol Cell. 25:151–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Siegel D, Hussein M, Belani C, Robert F,
Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C and Rizvi
S: Vorinostat in solid and hematologic malignancies. J Hematol
Oncol. 2:312009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Miyar A, Habibi I, Ebrahimi A, Mansourpour
D, Mokarizadeh A, Rajabi A, Farshgar R, Eshaghzadeh M,
Zamani-Ahmadmahmudi M and Nodushan SM: Predictive and prognostic
value of TLR9 and NFKBIA gene expression as potential biomarkers
for human glioma diagnosis. J Neurol Sci. 368:314–317. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zagzag D, Nomura M, Friedlander DR, Blanco
CY, Gagner JP, Nomura N and Newcomb EW: Geldanamycin inhibits
migration of glioma cells in vitro: A potential role for
hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J
Cell Physiol. 196:394–402. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Simioni C, Cani A, Martelli AM, Zauli G,
Alameen AA, Ultimo S, Tabellini G, McCubrey JA, Capitani S and Neri
LM: The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays
cytotoxic activity in both normoxic and hypoxic hepatocarcinoma
cells. Oncotarget. 6:17147–17160. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Huang WJ, Liang YC, Chuang SE, Chi LL, Lee
CY, Lin CW, Chen AL, Huang JS, Chiu CJ, Lee CF, Huang CY and Chen
CN: NBM-HD-1: A novel histone deacetylase inhibitor with anticancer
activity. Evid Based Complement Alternat Med. 2012:7814172012.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Huang WJ, Lin CW, Lee CY, Chi LL, Chao YC,
Wang HN, Chiou BL, Chen TJ, Huang CY and Chen CN: NBM-HD-3, a novel
histone deacetylase inhibitor with anticancer activity through
modulation of PTEN and AKT in brain cancer cells. J Ethnopharmacol.
136:156–167. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang W, Lv S, Liu J, Zang Z, Yin J, An N,
Yang H and Song Y: PCI-24781 down-regulates EZH2 expression and
then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR
pathway. Genet Mol Biol. 37:716–724. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Redjal N, Reinshagen C, Le A, Walcott BP,
McDonnell E, Dietrich J and Nahed BV: Valproic acid, compared to
other antiepileptic drugs, is associated with improved overall and
progression-free survival in glioblastoma but worse outcome in
grade II/III gliomas treated with temozolomide. J Neurooncol.
127:505–514. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hoja S, Schulze M, Rehli M, Proescholdt M,
Herold-Mende C, Hau P and Riemenschneider MJ: Molecular dissection
of the valproic acid effects on glioma cells. Oncotarget. Aug
18–2016.(Epub ahead of print). doi: 10.18632/oncotarget.11379.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pont LM Berghauser, Kleijn A, Kloezeman
JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven
CM and Lamfers ML: The HDAC inhibitors scriptaid and LBH589
combined with the oncolytic virus Delta24-RGD exert enhanced
anti-tumor efficacy in patient-derived glioblastoma cells. PLoS
One. 10:e01270582015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Vasilatos SN, Katz TA, Oesterreich S, Wan
Y, Davidson NE and Huang Y: Crosstalk between lysine-specific
demethylase 1 (LSD1) and histone deacetylases mediates
antineoplastic efficacy of HDAC inhibitors in human breast cancer
cells. Carcinogenesis. 34:1196–1207. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang Z, Wang N, Han S, Wang D, Mo S, Yu L,
Huang H, Tsui K, Shen J and Chen J: Dietary compound
isoliquiritigenin inhibits breast cancer neoangiogenesis via
VEGF/VEGFR-2 signaling pathway. PLoS One. 8:e685662013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhao S, Chang H, Ma P, Gao G, Jin C, Zhao
X, Zhou W and Jin B: Inhibitory effect of DNA topoisomerase
inhibitor isoliquiritigenin on the growth of glioma cells. Int J
Clin Exp Pathol. 8:12577–12582. 2015.PubMed/NCBI
|
|
117
|
Zhou GS, Song LJ and Yang B:
Isoliquiritigenin inhibits proliferation and induces apoptosis of
U87 human glioma cells in vitro. Mol Med Rep. 7:531–536.
2013.PubMed/NCBI
|
|
118
|
Ma J, Han LZ, Liang H, Mi C, Shi H, Lee JJ
and Jin X: Celastrol inhibits the HIF-1α pathway by inhibition of
mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma
cells. Oncol Rep. 32:235–242. 2014.PubMed/NCBI
|
|
119
|
Zhou YX and Huang YL: Antiangiogenic
effect of celastrol on the growth of human glioma: An in vitro and
in vivo study. Chin Med J. 122:1666–1673. 2009.PubMed/NCBI
|
|
120
|
Huang Y, Zhou Y, Fan Y and Zhou D:
Celastrol inhibits the growth of human glioma xenografts in nude
mice through suppressing VEGFR expression. Cancer Lett.
264:101–106. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Bordji K, Grandval A, Cuhna-Alves L,
Lechapt-Zalcman E and Bernaudin M: Hypoxia-inducible factor-2α
(HIF-2α), but not HIF-1α, is essential for hypoxic induction of
class III β-tubulin expression in human glioblastoma cells. FEBS J.
281:5220–5236. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Bache M, Rot S, Keßler J, Güttler A,
Wichmann H, Greither T, Wach S, Taubert H, Söling A, Bilkenroth U,
et al: mRNA expression levels of hypoxia-induced and stem
cell-associated genes in human glioblastoma. Oncol Rep.
33:3155–3161. 2015.PubMed/NCBI
|
|
123
|
Jonasch E, Futreal PA, Davis IJ, Bailey
ST, Kim WY, Brugarolas J, Giaccia AJ, Kurban G, Pause A, Frydman J,
et al: State of the science: An update on renal cell carcinoma. Mol
Cancer Res. 10:859–880. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Bhagat M, Palanichamy JK, Ramalingam P,
Mudassir M, Irshad K, Chosdol K, Sarkar C, Seth P, Goswami S, Sinha
S, et al: HIF-2α mediates a marked increase in migration and
stemness characteristics in a subset of glioma cells under hypoxia
by activating an Oct-4/Sox-2-Mena (INV) axis. Int J Biochem Cell
Biol. 74:60–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Miranda-Gonçalves V, Granja S, Martinho O,
Honavar M, Pojo M, Costa BM, Pires MM, Pinheiro C, Cordeiro M,
Bebiano G, et al: Hypoxia-mediated upregulation of MCT1 expression
supports the glycolytic phenotype of glioblastomas. Oncotarget. Jun
16–2016.(Epub ahead of print). doi: 10.18632/oncotarget.
|
|
126
|
Zhang J, Zhu L, Fang J, Ge Z and Li X:
LRG1 modulates epithelial-mesenchymal transition and angiogenesis
in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res.
35:292016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li S, Zhang J, Yang H, Wu C, Dang X and
Liu Y: Copper depletion inhibits CoCl2-induced
aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and
inhibition of Snail/Twist-mediated epithelial-mesenchymal
transition. Sci Rep. 5:124102015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ishii A, Kimura T, Sadahiro H, Kawano H,
Takubo K, Suzuki M and Ikeda E: Histological characterization of
the tumorigenic ‘peri-necrotic niche’ harboring quiescent stem-like
tumor cells in glioblastoma. PLoS One. 11:e01473662016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Xu H, Rahimpour S, Nesvick CL, Zhang X, Ma
J, Zhang M, Zhang G, Wang L, Yang C, Hong CS, et al: Activation of
hypoxia signaling induces phenotypic transformation of glioma
cells: Implications for bevacizumab antiangiogenic therapy.
Oncotarget. 6:11882–11893. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Clarke RH, Moosa S, Anzivino M, Wang Y,
Floyd DH, Purow BW and Lee KS: Sustained radiosensitization of
hypoxic glioma cells after oxygen pretreatment in an animal model
of glioblastoma and in vitro models of tumor hypoxia. PLoS One.
9:e1111992014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Balamurugan K, Wang JM, Tsai HH, Sharan S,
Anver M, Leighty R and Sterneck E: The tumour suppressor C/EBPδ
inhibits FBXW7 expression and promotes mammary tumour metastasis.
EMBO J. 29:4106–4117. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sudhagar S, Sathya S and Lakshmi BS: Rapid
non-genomic signalling by 17β-oestradiol through c-Src involves
mTOR-dependent expression of HIF-1α in breast cancer cells. Br J
Cancer. 105:953–960. 2011. View Article : Google Scholar : PubMed/NCBI
|