Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2017 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2017 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells

  • Authors:
    • Youn Ju Lee
    • Taeho Lim
    • Min Su Han
    • Sun-Hwa Lee
    • Suk‑Hwan Baek
    • Hong-Yan Nan
    • Chuhee Lee
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, College of Medicine, Catholic University of Daegu, Daegu 47472, Republic of Korea, Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 40161, Republic of Korea, Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
  • Pages: 1219-1226
    |
    Published online on: December 23, 2016
       https://doi.org/10.3892/or.2016.5336
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

TAM receptor tyrosine kinases (RTKs), Tyro3, Axl and MerTK, transduce diverse signals responsible for cell survival, growth, proliferation and anti-apoptosis. In the present study, we demonstrated the effect of luteolin, a flavonoid with antioxidant, anti-inflammatory and anticancer activities, on the expression and activation of TAM RTKs and the association with its cytotoxicity in non-small cell lung cancer (NSCLC) cells. We observed the cytotoxic effect of luteolin in parental A549 and H460 cells as well as in cisplatin-resistant A549/CisR and H460/CisR cells. Exposure of these cells to luteolin also resulted in a dose‑dependent decrease in clonogenic ability. Next, luteolin was found to decrease the protein levels of all three TAM RTKs in the A549 and A549/CisR cells in a dose‑dependent manner. In a similar manner, in H460 and H460/CisR cells, the protein levels of Axl and Tyro3 were decreased following luteolin treatment. In addition, Axl promoter activity was decreased by luteolin, indicating that luteolin suppresses Axl expression at the transcriptional level. We next found that luteolin abrogated Axl phosphorylation in response to growth arrest-specific 6 (Gas6), its ligand, implying the inhibitory effect of luteolin on Gas6-induced Axl activation. Ectopic expression of Axl was observed to attenuate the antiproliferative effect of luteolin, while knockdown of the Axl protein level using a gold nanoparticle-assisted gene delivery system increased its cytotoxicity. In contrast to the inhibitory effect of luteolin on the expression of TAM RTKs, interleukin-8 (IL-8) production was not decreased by luteolin in H460 and H460/CisR cells, while IL-8 production/cell was increased. Collectively, our data suggest that TAM RTKs, but not IL-8, are promising therapeutic targets of luteolin to abrogate cell proliferation and to overcome chemoresistance in NSCLC cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Stinchcombe TE and Socinski MA: Treatment paradigms for advanced stage non-small cell lung cancer in the era of multiple lines of therapy. J Thorac Oncol. 4:243–250. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Lemke G: Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 5:a0090762013. View Article : Google Scholar : PubMed/NCBI

3 

Lemke G and Rothlin CV: Immunobiology of the TAM receptors. Nat Rev Immunol. 8:327–336. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Lemke G and Burstyn-Cohen T: TAM receptors and the clearance of apoptotic cells. Ann NY Acad Sci. 1209:23–29. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H and Mizuno K: Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem. 271:30022–30027. 1996. View Article : Google Scholar : PubMed/NCBI

6 

Braunger J, Schleithoff L, Schulz AS, Kessler H, Lammers R, Ullrich A, Bartram CR and Janssen JW: Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site. Oncogene. 14:2619–2631. 1997. View Article : Google Scholar : PubMed/NCBI

7 

Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Göhring W, Ullrich A, Timpl R and Hohenester E: Structural basis for Gas6-Axl signalling. EMBO J. 25:80–87. 2006. View Article : Google Scholar : PubMed/NCBI

8 

O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, Espinosa R III, Le Beau MM, Earp HS and Liu ET: axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 11:5016–5031. 1991. View Article : Google Scholar : PubMed/NCBI

9 

Rochlitz C, Lohri A, Bacchi M, Schmidt M, Nagel S, Fopp M, Fey MF, Herrmann R and Neubauer A: Axl expression is associated with adverse prognosis and with expression of Bcl-2 and CD34 in de novo acute myeloid leukemia (AML): Results from a multicenter trial of the Swiss Group for Clinical Cancer Research (SAKK). Leukemia. 13:1352–1358. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Berclaz G, Altermatt HJ, Rohrbach V, Kieffer I, Dreher E and Andres AC: Estrogen dependent expression of the receptor tyrosine kinase axl in normal and malignant human breast. Ann Oncol. 12:819–824. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Craven RJ, Xu LH, Weiner TM, Fridell YW, Dent GA, Srivastava S, Varnum B, Liu ET and Cance WG: Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer. 60:791–797. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Nemoto T, Ohashi K, Akashi T, Johnson JD and Hirokawa K: Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology. 65:195–203. 1997. View Article : Google Scholar : PubMed/NCBI

13 

Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J, Wei K, Kuo CJ, Longacre TA and Giaccia AJ: AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res. 70:7570–7579. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Sainaghi PP, Castello L, Bergamasco L, Galletti M, Bellosta P and Avanzi GC: Gas6 induces proliferation in prostate carcinoma cell lines expressing the Axl receptor. J Cell Physiol. 204:36–44. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Ito T, Ito M, Naito S, Ohtsuru A, Nagayama Y, Kanematsu T, Yamashita S and Sekine I: Expression of the Axl receptor tyrosine kinase in human thyroid carcinoma. Thyroid. 9:563–567. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, et al: An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 19:279–290. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Asiedu MK, Beauchamp-Perez FD, Ingle JN, Behrens MD, Radisky DC and Knutson KL: AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene. 33:1316–1324. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Wu F, Li J, Jang C, Wang J and Xiong J: The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung carcinoma. Int J Clin Exp Pathol. 7:6653–6661. 2014.PubMed/NCBI

19 

Brand TM, Iida M, Stein AP, Corrigan KL, Braverman CM, Coan JP, Pearson HE, Bahrar H, Fowler TL, Bednarz BP, et al: AXL is a logical molecular target in head and neck squamous cell carcinoma. Clin Cancer Res. 21:2601–2612. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Wimmel A, Glitz D, Kraus A, Roeder J and Schuermann M: Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer. 37:2264–2274. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, Lee HS and Wu CW: Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia. 7:1058–1064. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, et al: Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 44:852–860. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Rho JK, Choi YJ, Kim SY, Kim TW, Choi EK, Yoon SJ, Park BM, Park E, Bae JH, Choi CM, et al: MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation. Cancer Res. 74:253–262. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y and Pei L: An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 29:5254–5264. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, Kallop D, Ludlam MJ and Pei L: Axl as a potential therapeutic target in cancer: Role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 28:3442–3455. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, Wu YQ, Song J, Yan J and Wu LJ: Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs. Int J Mol Med. 28:769–776. 2011.PubMed/NCBI

27 

Gastonguay A, Berg T, Hauser AD, Schuld N, Lorimer E and Williams CL: The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther. 13:647–656. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Scheibenbogen C, Möhler T, Haefele J, Hunstein W and Keilholz U: Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Res. 5:179–181. 1995. View Article : Google Scholar : PubMed/NCBI

29 

Browne A, Sriraksa R, Guney T, Rama N, Van Noorden S, Curry E, Gabra H, Stronach E and El-Bahrawy M: Differential expression of IL-8 and IL-8 receptors in benign, borderline and malignant ovarian epithelial tumours. Cytokine. 64:413–421. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Kim SJ, Uehara H, Karashima T, Mccarty M, Shih N and Fidler IJ: Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia. 3:33–42. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL and Li LZ: Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine. 56:365–375. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Stronach EA, Cunnea P, Turner C, Guney T, Aiyappa R, Jeyapalan S, de Sousa CH, Browne A, Magdy N, Studd JB, et al: The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma. Oncotarget. 6:31593–31603. 2015.PubMed/NCBI

33 

Duan Z, Feller AJ, Penson RT, Chabner BA and Seiden MV: Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: Analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res. 5:3445–3453. 1999.PubMed/NCBI

34 

Fernando RI, Hamilton DH, Dominguez C, David JM, McCampbell KK and Palena C: IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget. 7:42031–4204. 2016.PubMed/NCBI

35 

Liu YN, Chang TH, Tsai MF, Wu SG, Tsai TH, Chen HY, Yu SL, Yang JC and Shih JY: IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget. 6:10415–10431. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Giles KM, Kalinowski FC, Candy PA, Epis MR, Zhang PM, Redfern AD, Stuart LM, Goodall GJ and Leedman PJ: Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther. 12:2541–2558. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Gong J, Morishita A, Kurokohchi K, Tani J, Kato K, Miyoshi H, Inoue H, Kobayashi M, Liu S, Murota M, et al: Use of protein array to investigate receptor tyrosine kinases activated in gastric cancer. Int J Oncol. 36:101–106. 2010.PubMed/NCBI

38 

Tu SH, Ho CT, Liu MF, Huang CS, Chang HW, Chang CH, Wu CH and Ho YS: Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem. 141:1553–1561. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Chian S, Li YY, Wang XJ and Tang XW: Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev. 15:2911–2916. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Qu Q, Qu J, Guo Y, Zhou BT and Zhou HH: Luteolin potentiates the sensitivity of colorectal cancer cell lines to oxaliplatin through the PPARγ/OCTN2 pathway. Anticancer Drugs. 25:1016–1027. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Lin Y, Shi R, Wang X and Shen HM: Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 8:634–646. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, Knyazeva T, Barbieri V, Reindl M, Muigg A, et al: Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 14:130–138. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Gustafsson A, Martuszewska D, Johansson M, Ekman C, Hafizi S, Ljungberg B and Dahlbäck B: Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res. 15:4742–4749. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Ryou SM, Kim JM, Yeom JH, Hyun S, Kim S, Han MS, Kim SW, Bae J, Rhee S and Lee K: Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophys Res Commun. 416:178–183. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS and Mirkin CA: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 312:1027–1030. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB and Lokeshwar BL: Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67:6854–6862. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Luppi F, Longo AM, de Boer WI, Rabe KF and Hiemstra PS: Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer. 56:25–33. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Waugh DJ and Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Cheng D, Kong H and Li Y: Prognostic value of interleukin-8 and MMP-9 in nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol. 271:503–509. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Levin PA, Brekken RA, Byers LA, Heymach JV and Gerber DE: Axl receptor axis: A new therapeutic target in lung cancer. J Thorac Oncol. 11:1357–1362. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Shi J and Wei PK: Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol Lett. 11:1043–1050. 2016.PubMed/NCBI

52 

Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C and Huang RP: Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer. 109:507–515. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Kubo F, Ueno S, Hiwatashi K, Sakoda M, Kawaida K, Nuruki K and Aikou T: Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Ann Surg Oncol. 12:800–807. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X and Yu J: IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol. 48:5–12. 2016.PubMed/NCBI

55 

Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ, Zhou SL, Zhao YM, Xiao YS, Sun QM, Ding ZB, et al: Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol. 46:587–596. 2015.PubMed/NCBI

56 

Duan Z, Lamendola DE, Penson RT, Kronish KM and Seiden MV: Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine. 17:234–242. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Maheshwari A, Lu W, Guida WC, Christensen RD and Calhoun DA: IL-8/CXC ligand 8 survives neonatal gastric digestion as a result of intrinsic aspartyl proteinase resistance. Pediatr Res. 57:438–444. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Zuco V, Cassinelli G, Cossa G, Gatti L, Favini E, Tortoreto M, Cominetti D, Scanziani E, Castiglioni V, Cincinelli R, et al: Targeting the invasive phenotype of cisplatin-resistant non-small cell lung cancer cells by a novel histone deacetylase inhibitor. Biochem Pharmacol. 94:79–90. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee YJ, Lim T, Han MS, Lee S, Baek SH, Nan H and Lee C: Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells. Oncol Rep 37: 1219-1226, 2017.
APA
Lee, Y.J., Lim, T., Han, M.S., Lee, S., Baek, S., Nan, H., & Lee, C. (2017). Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells. Oncology Reports, 37, 1219-1226. https://doi.org/10.3892/or.2016.5336
MLA
Lee, Y. J., Lim, T., Han, M. S., Lee, S., Baek, S., Nan, H., Lee, C."Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells". Oncology Reports 37.2 (2017): 1219-1226.
Chicago
Lee, Y. J., Lim, T., Han, M. S., Lee, S., Baek, S., Nan, H., Lee, C."Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells". Oncology Reports 37, no. 2 (2017): 1219-1226. https://doi.org/10.3892/or.2016.5336
Copy and paste a formatted citation
x
Spandidos Publications style
Lee YJ, Lim T, Han MS, Lee S, Baek SH, Nan H and Lee C: Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells. Oncol Rep 37: 1219-1226, 2017.
APA
Lee, Y.J., Lim, T., Han, M.S., Lee, S., Baek, S., Nan, H., & Lee, C. (2017). Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells. Oncology Reports, 37, 1219-1226. https://doi.org/10.3892/or.2016.5336
MLA
Lee, Y. J., Lim, T., Han, M. S., Lee, S., Baek, S., Nan, H., Lee, C."Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells". Oncology Reports 37.2 (2017): 1219-1226.
Chicago
Lee, Y. J., Lim, T., Han, M. S., Lee, S., Baek, S., Nan, H., Lee, C."Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells". Oncology Reports 37, no. 2 (2017): 1219-1226. https://doi.org/10.3892/or.2016.5336
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team