Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2017 Volume 37 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2017 Volume 37 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1

  • Authors:
    • Chao Huang
    • Hong Liu
    • Xiu-Li Gong
    • Li-Yun Wu
    • Bin Wen
  • View Affiliations / Copyright

    Affiliations: Pi-Wei Institute, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
  • Pages: 1637-1645
    |
    Published online on: January 17, 2017
       https://doi.org/10.3892/or.2017.5379
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tissue microenvironment functions as a crucial player in carcinogenesis, and transforming growth factor-β1 (TGF-β1) within the microenvironment stimulates the formation of neoplasms. Using an in vitro model of malignancy induced by TGF-β1, we assessed the effect of evodiamine and berberine on the interaction between DNA methyltransferases (DNMTs) and target microRNAs (miRNAs) in the model. Colon tissues from neonatal rats 7 days of age were cultured and malignancy was induced by TGF-β1 in vitro for 48 h, and then the tissues were respectively treated with evodiamine and berberine for 24 h. Morphological alteration of tissues was observed by an inverted microscope, histological structures were observed using hematoxylin and eosin staining, and the expression levels of DNMTs and targeted miRNAs screened by bioinformatics software combined with Gene chip analysis in our previous study were detected by immunohistochemistry and quantified by real-time PCR. Twenty-four hours after treatment with TGF-β1, expression levels of DNMT1, DNMT3A, DNMT3B and miR-152 (target DNMT1), miR-429 (target DNMT3A) and miR-29a (target DNMT3A/3B) were markedly decreased; however, after 48 h, the expression levels of DNMT1 and DNMT3A were significantly increased, but their target miRNAs were still decreased. After treatment with a DNMT inhibitor (5-Aza-dC), expression levels of the miRNAs were increased to a larger extent, but did not reach normal levels. After treatment with berberine and evodiamine for 24 h, respectively, increased expression of DNMT1, DNMT3A, DNMT3B and miR-152, miR-429, miR-29a was noted. In conclusion, the results of the present study suggest that miRNAs can also be post-transcriptionally regulated by their corresponding DNMTs and that berberine and evodiamine regulate the expression of these genes, which provides early epigenetic evidence for the prevention and therapy of colorectal cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Tenesa A and Dunlop MG: New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 10:353–358. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Friess H, Langrehr JM, Oettle H, Raedle J, Niedergethmann M, Dittrich C, Hossfeld DK, Stöger H, Neyns B, Herzog P, et al: A randomized multi-center phase II trial of the angiogenesis inhibitor cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer. 6:2852006. View Article : Google Scholar : PubMed/NCBI

3 

Philip PA, Benedetti J, Corless CL, Wong R, O'Reilly EM, Flynn PJ, Rowland KM, Atkins JN, Mirtsching BC, Rivkin SE, et al: Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol. 28:3605–3610. 2010. View Article : Google Scholar : PubMed/NCBI

4 

van Kampen JG, Marijnissen-van Zanten MA, Simmer F, van der Graaf WT, Ligtenberg MJ and Nagtegaal ID: Epigenetic targeting in pancreatic cancer. Cancer Treat Rev. 40:656–664. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Garagnani P, Pirazzini C and Franceschi C: Colorectal cancer microenvironment: Among nutrition, gut microbiota, inflammation and epigenetics. Curr Pharm Des. 19:765–778. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Postovit LM, Seftor EA, Seftor RE and Hendrix MJ: Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res. 66:7833–7836. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Adjei IM and Blanka S: Modulation of the tumor microenvironment for cancer treatment: A biomaterials approach. J Funct Biomater. 6:81–103. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Shi X and Wang X: The role of MTDH/AEG-1 in the progression of cancer. Int J Clin Exp Med. 8:4795–4807. 2015.PubMed/NCBI

9 

Ma H, Xu H and Qin J: Biomimetic tumor microenvironment on a microfluidic platform. Biomicrofluidics. 7:115012013. View Article : Google Scholar : PubMed/NCBI

10 

Schmaus A, Bauer J and Sleeman JP: Sugars in the microenvironment: The sticky problem of HA turnover in tumors. Cancer Metastasis Rev. 33:1059–1079. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G and Cao D: Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: An update. Cell Tissue Res. 347:73–84. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E and de Gramont A: Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 147:22–31. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Ohshio Y, Teramoto K, Hashimoto M, Kitamura S, Hanaoka J and Kontani K: Inhibition of transforming growth factor-β release from tumor cells reduces their motility associated with epithelial-mesenchymal transition. Oncol Rep. 30:1000–1006. 2013.PubMed/NCBI

15 

Mao Y, Keller ET, Garfield DH, Shen K and Wang J: Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32:303–315. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Quante M, Varga J, Wang TC and Greten FR: The gastrointestinal tumor microenvironment. Gastroenterology. 145:63–78. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Lee JY, Jeong W, Lim W, Lim CH, Bae SM, Kim J, Bazer FW and Song G: Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen. PLoS One. 8:e616582013. View Article : Google Scholar : PubMed/NCBI

18 

Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, Li X and Hu B: A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 361:121–127. 2015. View Article : Google Scholar : PubMed/NCBI

19 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Mendell JT: MicroRNAs: Critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4:1179–1184. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Vaiopoulos AG, Athanasoula KCh and Papavassiliou AG: NF-κB in colorectal cancer. J Mol Med. 91:1029–1037. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hamidi T, Singh AK and Chen T: Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 7:247–265. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Cea M, Cagnetta A, Gobbi M, Patrone F, Richardson PG, Hideshima T and Anderson KC: New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Curr Pharm Des. 19:734–744. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Andreoli F, Barbosa AJ, Parenti MD and Del Rio A: Modulation of epigenetic targets for anticancer therapy: Clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des. 19:578–613. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Esteller M: Epigenetics in cancer. N Engl J Med. 358:1148–1159. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Laird PW: The power and the promise of DNA methylation markers. Nat Rev Cancer. 3:253–266. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Wu Q and Ni X: ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 16:13–19. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Luczak MW and Jagodziński PP: The role of DNA methylation in cancer development. Folia Histochem Cytobiol. 44:143–154. 2006.PubMed/NCBI

31 

Pastuszak-Lewandoska D, Kordiak J, Migdalska-Sęk M, Czarnecka KH, Antczak A, Górski P, Nawrot E, Kiszałkiewicz JM, Domańska D and Brzeziańska-Lasota E: Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1NPRL2/G21 and RASSF1A in non-small cell lung cancer patients. Respir Res. 16:762015. View Article : Google Scholar : PubMed/NCBI

32 

Garzon R, Fabbri M, Cimmino A, Calin GA and Croce CM: MicroRNA expression and function in cancer. Trends Mol Med. 12:580–587. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH and Zhuang SM: Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI

34 

Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, et al: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 104:15805–15810. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Xu H, Cheung IY, Guo HF and Cheung NK: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: Potential implications for immune based therapy of human solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D, Duan X, Xuan A, Zhang W, Lu J, et al: MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis. 34:446–453. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Langhe R, Norris L, Saadeh FA, Blackshields G, Varley R, Harrison A, Gleeson N, Spillane C, Martin C, O'Donnell DM, et al: A novel serum microRNA panel to discriminate benign from malignant ovarian disease. Cancer Lett. 356:628–636. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Pinto R, De Summa S, Danza K, Popescu O, Paradiso A, Micale L, Merla G, Palumbo O, Carella M and Tommasi S: MicroRNA expression profiling in male and female familial breast cancer. Br J Cancer. 111:2361–2368. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Omrane I and Benammar-Elgaaied A: The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta. 1856:28–38. 2015.PubMed/NCBI

40 

Slaby O, Svoboda M, Michalek J and Vyzula R: MicroRNAs in colorectal cancer: Translation of molecular biology into clinical application. Mol Cancer. 8:1022009. View Article : Google Scholar : PubMed/NCBI

41 

Chen C, Yu Z, Li Y, Fichna J and Storr M: Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. Am J Chin Med. 42:1053–1070. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wang L, Cao H, Lu N, Liu L, Wang B, Hu T, Israel DA, Peek RM Jr, Polk DB and Yan F: Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One. 8:e566662013. View Article : Google Scholar : PubMed/NCBI

43 

Park JJ, Seo SM, Kim EJ, Lee YJ, Ko YG, Ha J and Lee M: Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem Biophys Res Commun. 426:461–467. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Murthy KN Chidambara, Jayaprakasha GK and Patil BS: The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol. 688:14–21. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Kan SF, Yu CH, Pu HF, Hsu JM, Chen MJ and Wang PS: Anti-proliferative effects of evodiamine on human prostate cancer cell lines DU145 and PC3. J Cell Biochem. 101:44–56. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Kobayashi Y: The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Med. 69:425–428. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Chien CC, Wu MS, Shen SC, Ko CH, Chen CH, Yang LL and Chen YC: Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: A structure-activity study of evodiamine. PLoS One. 9:e997292014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang C, Liu H, Gong X, Wu L and Wen B: Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol Rep 37: 1637-1645, 2017.
APA
Huang, C., Liu, H., Gong, X., Wu, L., & Wen, B. (2017). Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncology Reports, 37, 1637-1645. https://doi.org/10.3892/or.2017.5379
MLA
Huang, C., Liu, H., Gong, X., Wu, L., Wen, B."Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1". Oncology Reports 37.3 (2017): 1637-1645.
Chicago
Huang, C., Liu, H., Gong, X., Wu, L., Wen, B."Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1". Oncology Reports 37, no. 3 (2017): 1637-1645. https://doi.org/10.3892/or.2017.5379
Copy and paste a formatted citation
x
Spandidos Publications style
Huang C, Liu H, Gong X, Wu L and Wen B: Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol Rep 37: 1637-1645, 2017.
APA
Huang, C., Liu, H., Gong, X., Wu, L., & Wen, B. (2017). Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncology Reports, 37, 1637-1645. https://doi.org/10.3892/or.2017.5379
MLA
Huang, C., Liu, H., Gong, X., Wu, L., Wen, B."Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1". Oncology Reports 37.3 (2017): 1637-1645.
Chicago
Huang, C., Liu, H., Gong, X., Wu, L., Wen, B."Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1". Oncology Reports 37, no. 3 (2017): 1637-1645. https://doi.org/10.3892/or.2017.5379
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team