|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Forner A, Llovet JM and Bruix J:
Hepatocellular carcinoma. Lancet. 379:1245–1255. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yaghmai V, Besa C, Kim E, Gatlin JL,
Siddiqui NA and Taouli B: Imaging assessment of hepatocellular
carcinoma response to locoregional and systemic therapy. AJR Am J
Roentgenol. 201:80–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lewandowski RJ, Mulcahy MF, Kulik LM, Riaz
A, Ryu RK, Baker TB, Ibrahim SM, Abecassis MI, Miller FH, Sato KT,
et al: Chemoembolization for hepatocellular carcinoma:
Comprehensive imaging and survival analysis in a 172-patient
cohort. Radiology. 255:955–965. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yeo DM, Choi JI, Lee YJ, Park MY, Chun HJ
and Lee HG: Comparison of RECIST, mRECIST, and choi criteria for
early response evaluation of hepatocellular carcinoma after
transarterial chemoembolization using drug-eluting beads. J Comput
Assist Tomogr. 38:391–397. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gillmore R, Stuart S, Kirkwood A,
Hameeduddin A, Woodward N, Burroughs AK and Meyer T: EASL and
mRECIST responses are independent prognostic factors for survival
in hepatocellular cancer patients treated with transarterial
embolization. J Hepatol. 55:1309–1316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Prajapati HJ, Spivey JR, Hanish SI,
El-Rayes BF, Kauh JS, Chen Z and Kim HS: mRECIST and EASL responses
at early time point by contrast-enhanced dynamic MRI predict
survival in patients with unresectable hepatocellular carcinoma
(HCC) treated by doxorubicin drug-eluting beads transarterial
chemoembolization (DEB TACE). Ann Oncol. 24:965–973. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Reig M, Rimola J, Torres F, Darnell A,
Rodriguez-Lope C, Forner A, Llarch N, Ríos J, Ayuso C and Bruix J:
Postprogression survival of patients with advanced hepatocellular
carcinoma: Rationale for second-line trial design. Hepatology.
58:2023–2031. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Miller AB, Hoogstraten B, Staquet M and
Winkler A: Reporting results of cancer treatment. Cancer.
47:207–214. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Therasse P, Arbuck SG, Eisenhauer EA,
Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van
Oosterom AT, Christian MC, et al: New guidelines to evaluate the
response to treatment in solid tumors. European Organization for
Research and Treatment of Cancer, National Cancer Institute of the
United States, National Cancer Institute of Canada. J Natl Cancer
Inst. 92:205–216. 2000. View Article : Google Scholar
|
|
12
|
Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S,
Mooney M, et al: New response evaluation criteria in solid tumours:
Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bruix J and Sherman M: American
Association for the Study of Liver Diseases: Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bruix J, Sherman M, Llovet JM, Beaugrand
M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M
and Rodés J: EASL Panel of Experts on HCC; European Association for
the Study of the Liver: Clinical management of hepatocellular
carcinoma. Conclusions of the Barcelona-2000 EASL conference. J
Hepatol. 35:421–430. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bruix J and Sherman M: Practice Guidelines
Committee, American Association for the Study of Liver Diseases:
Management of hepatocellular carcinoma. Hepatology. 42:1208–1236.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lencioni R and Llovet JM: Modified RECIST
(mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis.
30:52–60. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khalili K, Kim TK, Jang HJ, Yazdi LK,
Guindi M and Sherman M: Indeterminate 1–2-cm nodules found on
hepatocellular carcinoma surveillance: Biopsy for all, some, or
none? Hepatology. 54:2048–2054. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kudo M, Kubo S, Takayasu K, Sakamoto M,
Tanaka M, Ikai I, Furuse J, Nakamura K and Makuuchi M: Liver Cancer
Study Group of Japan (Committee for Response Evaluation Criteria in
Cancer of the Liver, Liver Cancer Study Group of Japan): Response
Evaluation Criteria in Cancer of the Liver (RECICL) proposed by the
Liver Cancer Study Group of Japan (2009 Revised Version). Hepatol
Res. 40:686–692. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kudo M, Ueshima K, Kubo S, Sakamoto M,
Tanaka M, Ikai I, Furuse J, Murakami T, Kadoya M and Kokudo N:
Liver Cancer Study Group of Japan: Response Evaluation Criteria in
Cancer of the Liver (RECICL) (2015 Revised version). Hepatol Res.
46:3–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Choi H, Charnsangavej C, Faria SC,
Macapinlac HA, Burgess MA, Patel SR, Chen LL, Podoloff DA and
Benjamin RS: Correlation of computed tomography and positron
emission tomography in patients with metastatic gastrointestinal
stromal tumor treated at a single institution with imatinib
mesylate: Proposal of new computed tomography response criteria. J
Clin Oncol. 25:1753–1759. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Forner A, Ayuso C, Varela M, Rimola J,
Hessheimer AJ, De Lope CR, Reig M, Bianchi L, Llovet JM and Bruix
J: Evaluation of tumor response after locoregional therapies in
hepatocellular carcinoma: Are response evaluation criteria in solid
tumors reliable? Cancer. 115:616–623. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li H, Guo Z, Si T and Wang H: EASL and
mRECIST responses are independent predictors of survival in
hepatocellular carcinoma patients treated with cryoablation. Eur J
Gastroenterol Hepatol. 25:620–627. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bargellini I, Vignali C, Cioni R, Petruzzi
P, Cicorelli A, Campani D, De Simone P, Filipponi F and Bartolozzi
C: Hepatocellular carcinoma: CT for tumor response after
transarterial chemoembolization in patients exceeding Milan
criteria - selection parameter for liver transplantation.
Radiology. 255:289–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Memon K, Kulik L, Lewandowski RJ, Wang E,
Riaz A, Ryu RK, Sato KT, Marshall K, Gupta R, Nikolaidis P, et al:
Radiographic response to locoregional therapy in hepatocellular
carcinoma predicts patient survival times. Gastroenterology.
141:526–535.e2.. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Riaz A, Miller FH, Kulik LM, Nikolaidis P,
Yaghmai V, Lewandowski RJ, Mulcahy MF, Ryu RK, Sato KT, Gupta R, et
al: Imaging response in the primary index lesion and clinical
outcomes following transarterial locoregional therapy for
hepatocellular carcinoma. JAMA. 303:1062–1069. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shim JH, Lee HC, Kim SO, Shin YM, Kim KM,
Lim YS and Suh DJ: Which response criteria best help predict
survival of patients with hepatocellular carcinoma following
chemoembolization? A validation study of old and new models.
Radiology. 262:708–718. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Salem R, Miller FH, Yaghmai V and
Lewandowski RJ: Response assessment methodologies in hepatocellular
carcinoma: Complexities in the era of local and systemic
treatments. J Hepatol. 58:1260–1262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim BK, Kim SU, Kim MJ, Kim KA, Kim DY,
Park JY, Ahn SH, Han KH and Chon CY: Number of target lesions for
EASL and modified RECIST to predict survivals in hepatocellular
carcinoma treated with chemoembolization. Clin Cancer Res.
19:1503–1511. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shim JH, Lee HC, Won HJ, Shin YM, Kim KM,
Lim YS and Suh DJ: Maximum number of target lesions required to
measure responses to transarterial chemoembolization using the
enhancement criteria in patients with intrahepatic hepatocellular
carcinoma. J Hepatol. 56:406–411. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Riaz A, Memon K, Miller FH, Nikolaidis P,
Kulik LM, Lewandowski RJ, Ryu RK, Sato KT, Gates VL, Mulcahy MF, et
al: Role of the EASL, RECIST, and WHO response guidelines alone or
in combination for hepatocellular carcinoma: Radiologic-pathologic
correlation. J Hepatol. 54:695–704. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Iwazawa J, Ohue S, Hashimoto N, Yasumasa
K, Abe H and Mitani T: Bevacizumab-induced hypovascular
hepatocellular carcinoma treated by transarterial chemoembolization
in a patient with metastatic colon cancer. J Vasc Interv Radiol.
21:412–414. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zocco MA, Garcovich M, Lupascu A, Di
Stasio E, Roccarina D, Annicchiarico BE, Riccardi L, Ainora ME,
Ponziani F, Caracciolo G, et al: Early prediction of response to
sorafenib in patients with advanced hepatocellular carcinoma: The
role of dynamic contrast enhanced ultrasound. J Hepatol.
59:1014–1021. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Roccarina D, Garcovich M, Ainora ME,
Riccardi L, Pompili M, Gasbarrini A and Zocco MA: Usefulness of
contrast enhanced ultrasound in monitoring therapeutic response
after hepatocellular carcinoma treatment. World J Hepatol.
7:1866–1874. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Miles KA, Hayball MP and Dixon AK:
Functional images of hepatic perfusion obtained with dynamic CT.
Radiology. 188:405–411. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kambadakone AR and Sahani DV: Body
perfusion CT: Technique, clinical applications, and advances.
Radiol Clin North Am. 47:161–178. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Morgan B, Thomas AL, Drevs J, Hennig J,
Buchert M, Jivan A, Horsfield MA, Mross K, Ball HA, Lee L, et al:
Dynamic contrast-enhanced magnetic resonance imaging as a biomarker
for the pharmacological response of PTK787/ZK 222584, an inhibitor
of the vascular endothelial growth factor receptor tyrosine
kinases, in patients with advanced colorectal cancer and liver
metastases: Results from two phase I studies. J Clin Oncol.
21:3955–3964. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
van Laarhoven HW, Rijpkema M, Punt CJ,
Ruers TJ, Hendriks JC, Barentsz JO and Heerschap A: Method for
quantitation of dynamic MRI contrast agent uptake in colorectal
liver metastases. J Magn Reson Imaging. 18:315–320. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lassau N, Koscielny S, Chami L, Chebil M,
Benatsou B, Roche A, Ducreux M, Malka D and Boige V: Advanced
hepatocellular carcinoma: Early evaluation of response to
bevacizumab therapy at dynamic contrast-enhanced US with
quantification-preliminary results. Radiology. 258:291–300. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shaw CM, Eisenbrey JR, Lyshchik A, OKane
PL, Merton DA, Machado P, Pino L, Brown DB and Forsberg F:
Contrast-enhanced ultrasound evaluation of residual blood flow to
hepatocellular carcinoma after treatment with transarterial
chemoembolization using drug-eluting beads: A prospective study. J
Ultrasound Med. 34:859–867. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Marcus CD, Ladam-Marcus V, Cucu C, Bouché
O, Lucas L and Hoeffel C: Imaging techniques to evaluate the
response to treatment in oncology: Current standards and
perspectives. Crit Rev Oncol Hematol. 72:217–238. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Claudon M, Dietrich CF, Choi BI, Cosgrove
DO, Kudo M, Nolsøe CP, Piscaglia F, Wilson SR, Barr RG, Chammas MC,
et al: World Federation for Ultrasound in Medicine; European
Federation of Societies for Ultrasound: Guidelines and good
clinical practice recommendations for Contrast Enhanced Ultrasound
(CEUS) in the liver - update 2012: A WFUMB-EFSUMB initiative in
cooperation with representatives of AFSUMB AIUM, ASUM, FLAUS and
ICUS. Ultrasound Med Biol. 39:187–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bartolotta TV, Taibbi A, Matranga D,
Midiri M and Lagalla R: 3D versus 2D contrast-enhanced sonography
in the evaluation of therapeutic response of hepatocellular
carcinoma after locoregional therapies: Preliminary findings.
Radiol Med (Torino). 120:695–704. 2015. View Article : Google Scholar
|
|
43
|
Zhu AX, Holalkere NS, Muzikansky A, Horgan
K and Sahani DV: Early antiangiogenic activity of bevacizumab
evaluated by computed tomography perfusion scan in patients with
advanced hepatocellular carcinoma. Oncologist. 13:120–125. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S,
Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of
sorafenib in patients in the Asia-Pacific region with advanced
hepatocellular carcinoma: A phase III randomised, double-blind,
placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liang PC, Chang HJ, Hsu C, Chen LT, Shih
TT and Liu TW: Perfusion parameters of dynamic contrast-enhanced
magnetic resonance imaging predict outcomes of hepatocellular
carcinoma receiving radiotherapy with or without thalidomide.
Hepatol Int. 9:258–268. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Griffiths JR, Tate AR, Howe FA and Stubbs
M: Group on MRS Application to Cancer: Magnetic Resonance
Spectroscopy of cancer-practicalities of multi-centre trials and
early results in non-Hodgkins lymphoma. Eur J Cancer. 38:2085–2093.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schwarz AJ, Maisey NR, Collins DJ,
Cunningham D, Huddart R and Leach MO: Early in vivo detection of
metabolic response: A pilot study of 1H MR spectroscopy in
extracranial lymphoma and germ cell tumours. Br J Radiol.
75:959–966. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bota S, Piscaglia F, Marinelli S,
Pecorelli A, Terzi E and Bolondi L: Comparison of international
guidelines for noninvasive diagnosis of hepatocellular carcinoma.
Liver Cancer. 1:190–200. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kaufmann S, Horger T, Oelker A, Kloth C,
Nikolaou K, Schulze M and Horger M: Characterization of
hepatocellular carcinoma (HCC) lesions using a novel CT-based
volume perfusion (VPCT) technique. Eur J Radiol. 84:1029–1035.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kaufmann S, Horger T, Oelker A, Beck S,
Schulze M, Nikolaou K, Ketelsen D and Horger M: Volume perfusion
computed tomography (VPCT)-based evaluation of response to TACE
using two different sized drug eluting beads in patients with
nonresectable hepatocellular carcinoma: Impact on tumor and liver
parenchymal vascularisation. Eur J Radiol. 84:2548–2554. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang D, Bangash AK, Rhee TK, Woloschak GE,
Paunesku T, Salem R, Omary RA and Larson AC: Liver tumors:
Monitoring embolization in rabbits with VX2 tumors - transcatheter
intraarterial first-pass perfusion MR imaging. Radiology.
245:130–139. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Larson AC, Wang D, Atassi B, Sato KT, Ryu
RK, Lewandowski RJ, Nemcek AA Jr, Mulcahy MF, Kulik LM, Miller FH,
et al: Transcatheter intraarterial perfusion: MR monitoring of
chemoembolization for hepatocellular carcinoma - feasibility of
initial clinical translation. Radiology. 246:964–971. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Katada Y, Shukuya T, Kawashima M, Nozaki
M, Imai H, Natori T and Tamano M: A comparative study between
arterial spin labeling and CT perfusion methods on hepatic portal
venous flow. Jpn J Radiol. 30:863–869. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Koh DM and Collins DJ: Diffusion-weighted
MRI in the body: Applications and challenges in oncology. AJR Am J
Roentgenol. 188:1622–1635. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Youn BJ, Chung JW, Son KR, Kim HC, Jae HJ,
Lee JM, Song IC, Kim IO and Park JH: Diffusion-weighted MR:
Therapeutic evaluation after chemoembolization of VX-2 carcinoma
implanted in rabbit liver. Acad Radiol. 15:593–600. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deng J, Miller FH, Rhee TK, Sato KT,
Mulcahy MF, Kulik LM, Salem R, Omary RA and Larson AC:
Diffusion-weighted MR imaging for determination of hepatocellular
carcinoma response to yttrium-90 radioembolization. J Vasc Interv
Radiol. 17:1195–1200. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kamel IR, Reyes DK, Liapi E, Bluemke DA
and Geschwind JF: Functional MR imaging assessment of tumor
response after 90Y microsphere treatment in patients with
unresectable hepatocellular carcinoma. J Vasc Interv Radiol.
18:49–56. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yuan Z, Ye XD, Dong S, Xu LC, Xu XY, Liu
SY and Xiao XS: Role of magnetic resonance diffusion-weighted
imaging in evaluating response after chemoembolization of
hepatocellular carcinoma. Eur J Radiol. 75:e9–e14. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chung JC, Naik NK, Lewandowski RJ, Deng J,
Mulcahy MF, Kulik LM, Sato KT, Ryu RK, Salem R, Larson AC, et al:
Diffusion-weighted magnetic resonance imaging to predict response
of hepatocellular carcinoma to chemoembolization. World J
Gastroenterol. 16:3161–3167. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kubota K, Yamanishi T, Itoh S, Murata Y,
Miyatake K, Yasunami H, Morio K, Hamada N, Nishioka A and Ogawa Y:
Role of diffusion-weighted imaging in evaluating therapeutic
efficacy after transcatheter arterial chemoembolization for
hepatocellular carcinoma. Oncol Rep. 24:727–732. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bonekamp S, Jolepalem P, Lazo M, Gulsun
MA, Kiraly AP and Kamel IR: Hepatocellular carcinoma: Response to
TACE assessed with semiautomated volumetric and functional analysis
of diffusion-weighted and contrast-enhanced MR imaging data.
Radiology. 260:752–761. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sahin H, Harman M, Cinar C, Bozkaya H,
Parildar M and Elmas N: Evaluation of treatment response of
chemoembolization in hepatocellular carcinoma with
diffusion-weighted imaging on 3.0-T MR imaging. J Vasc Interv
Radiol. 23:241–247. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vandecaveye V, Michielsen K, De Keyzer F,
Laleman W, Komuta M, Op De beeck K, Roskams T, Nevens F, Verslype C
and Maleux G: Chemoembolization for hepatocellular carcinoma:
1-month response determined with apparent diffusion coefficient is
an independent predictor of outcome. Radiology. 270:747–757. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Vouche M, Salem R, Lewandowski RJ and
Miller FH: Can volumetric ADC measurement help predict response to
Y90 radioembolization in HCC? Abdom Imaging. 40:1471–1480. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mannelli L, Kim S, Hajdu CH, Babb JS and
Taouli B: Serial diffusion-weighted MRI in patients with
hepatocellular carcinoma: Prediction and assessment of response to
transarterial chemoembolization. Preliminary experience. Eur J
Radiol. 82:577–582. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yuan Z, Li WT and Peng WJ: Pre-treatment
apparent diffusion coefficient is imaging biomarker for prediction
of response to chemoembolization in hepatocellular carcinoma. Eur J
Radiol. 82:e901–e902. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dong S, Ye XD, Yuan Z, Xu LC and Xiao XS:
Relationship of apparent diffusion coefficient to survival for
patients with unresectable primary hepatocellular carcinoma after
chemoembolization. Eur J Radiol. 81:472–477. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Corona-Villalobos CP, Halappa VG, Bonekamp
S, Eng J, Reyes D, Cosgrove D, Rastegar N, Pan L, Pawlik TM and
Kamel IR: Functional magnetic resonance imaging response of
targeted tumor burden and its impact on survival in patients with
hepatocellular carcinoma. Invest Radiol. 50:283–289. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ye XD, Li WT and Yuan Z: Apparent
diffusion coefficients at diffusion-weighted MR imaging: Potential
predictors of survival in patients with hepatocellular carcinoma
treated with chemoembolization. Radiology. 272:920–921. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mori Y, Tamai H, Shingaki N, Moribata K,
Deguchi H, Ueda K, Inoue I, Maekita T, Iguchi M, Kato J, et al:
Signal intensity of small hepatocellular carcinoma on apparent
diffusion coefficient mapping and outcome after radiofrequency
ablation. Hepatol Res. 45:75–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ye XD, Li WT and Yuan Z: Is volumetric
functional MR imaging superior to current anatomic imaging response
criteria for hepatocellular carcinoma after intraarterial therapy?
Radiology. 271:619–620. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang Y, Zhao J, Guo D, Zhong W and Ran L:
Evaluation of short-term response of high intensity focused
ultrasound ablation for primary hepatic carcinoma: Utility of
contrast-enhanced MRI and diffusion-weighted imaging. Eur J Radiol.
79:347–352. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Padhani AR, Liu G, Koh DM, Chenevert TL,
Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M,
Collins D, et al: Diffusion-weighted magnetic resonance imaging as
a cancer biomarker: Consensus and recommendations. Neoplasia.
11:102–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Park YS, Lee CH, Kim JH, Kim IS, Kiefer B,
Seo TS, Kim KA and Park CM: Using intravoxel incoherent motion
(IVIM) MR imaging to predict lipiodol uptake in patients with
hepatocellular carcinoma following transcatheter arterial
chemoembolization: A preliminary result. Magn Reson Imaging.
32:638–646. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Koh DM: Science to practice: Can
intravoxel incoherent motion diffusion-weighted MR imaging be used
to assess tumor response to antivascular drugs? Radiology.
272:307–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yuan Z, Zhang J, Yang H, Ye XD, Xu LC and
Li WT: Diffusion-weighted MR imaging of hepatocellular carcinoma:
Current value in clinical evaluation of tumor response to
locoregional treatment. J Vasc Interv Radiol. 27:20–30. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hiraoka A, Hirooka M, Ochi H, Koizumi Y,
Shimizu Y, Shiraishi A, Yamago H, Tanihira T, Miyata H, Ninomiya T,
et al: Importance of screening for synchronous malignant neoplasms
in patients with hepatocellular carcinoma: Impact of FDG PET/CT.
Liver Int. 33:1085–1091. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shiomi S and Kawabe J: Clinical
applications of positron emission tomography in hepatic tumors.
Hepatol Res. 41:611–617. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lee JW, Yun M, Cho A, Han KH, Kim DY, Lee
SM and Lee JD: The predictive value of metabolic tumor volume on
FDG PET/CT for transarterial chemoembolization and transarterial
chemotherapy infusion in hepatocellular carcinoma patients without
extrahepatic metastasis. Ann Nucl Med. 29:400–408. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lee JW, Oh JK, Chung YA, Na SJ, Hyun SH,
Hong IK, Eo JS, Song BI, Kim TS, Kim do Y, et al: Prognostic
significance of 18F-FDG uptake in hepatocellular carcinoma treated
with transarterial chemoembolization or concurrent
chemoradiotherapy: A multicenter retrospective cohort study. J Nucl
Med. 57:509–516. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hartenbach M, Weber S, Albert NL,
Hartenbach S, Hirtl A, Zacherl MJ, Paprottka PM, Tiling R,
Bartenstein P, Hacker M, et al: Evaluating treatment response of
radioembolization in intermediate-stage hepatocellular carcinoma
patients using 18F-Fluoroethylcholine PET/CT. J Nucl Med.
56:1661–1666. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jo IY, Son SH, Kim M, Sung SY, Won YK,
Kang HJ, Lee SJ, Chung YA, Oh JK and Kay CS: Prognostic value of
pretreatment 18F-FDG PET-CT in radiotherapy for patients with
hepatocellular carcinoma. Radiat Oncol J. 33:179–187. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cho E, Jun CH, Kim BS, Son DJ, Choi WS and
Choi SK: 18F-FDG PET CT as a prognostic factor in hepatocellular
carcinoma. Turk J Gastroenterol. 26:344–350. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ma W, Jia J, Wang S, Bai W, Yi J, Bai M,
Quan Z, Yin Z, Fan D, Wang J, et al: The prognostic value of
18F-FDG PET/CT for hepatocellular carcinoma treated with
transarterial chemoembolization (TACE). Theranostics. 4:736–744.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Young H, Baum R, Cremerius U, Herholz K,
Hoekstra O, Lammertsma AA, Pruim J and Price P: European
Organization for Research and Treatment of Cancer (EORTC) PET Study
Group: Measurement of clinical and subclinical tumour response
using [18F]-fluorodeoxyglucose and positron emission tomography:
Review and 1999 EORTC recommendations. Eur J Cancer. 35:1773–1782.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wahl RL, Jacene H, Kasamon Y and Lodge MA:
From RECIST to PERCIST: Evolving Considerations for PET response
criteria in solid tumors. J Nucl Med. 50 Suppl 1:122S–150S. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kuang Y, Salem N, Tian H, Kolthammer JA,
Corn DJ, Wu C, Wang F, Wang Y and Lee Z: Imaging lipid synthesis in
hepatocellular carcinoma with [methyl-11c]choline: Correlation with
in vivo metabolic studies. J Nucl Med. 52:98–106. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen CY, Li CW, Kuo YT, Jaw TS, Wu DK, Jao
JC, Hsu JS and Liu GC: Early response of hepatocellular carcinoma
to transcatheter arterial chemoembolization: Choline levels and MR
diffusion constants - initial experience. Radiology. 239:448–456.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kuo YT, Li CW, Chen CY, Jao J, Wu DK and
Liu GC: In vivo proton magnetic resonance spectroscopy of large
focal hepatic lesions and metabolite change of hepatocellular
carcinoma before and after transcatheter arterial chemoembolization
using 3.0-T MR scanner. J Magn Reson Imaging. 19:598–604. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wu B, Peng WJ, Wang PJ, Gu YJ, Li WT, Zhou
LP, Tang F and Zhong GM: In vivo 1H magnetic resonance spectroscopy
in evaluation of hepatocellular carcinoma and its early response to
transcatheter arterial chemoembolization. Chin Med Sci J.
21:258–264. 2006.PubMed/NCBI
|
|
91
|
Bian DJ, Xiao EH, Hu DX, Chen XY, Situ WJ,
Yuan SW, Sun JL and Yang LP: Magnetic resonance spectroscopy on
hepatocellular carcinoma after transcatheter arterial
chemoembolization. Chin J Cancer. 29:198–201. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Schilling A, Gewiese B, Berger G,
Boese-Landgraf J, Fobbe F, Stiller D, Gallkowski U and Wolf KJ:
Liver tumors: Follow-up with P-31 MR spectroscopy after local
chemotherapy and chemoembolization. Radiology. 182:887–890. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Meyerhoff DJ, Karczmar GS, Valone F,
Venook A, Matson GB and Weiner MW: Hepatic cancers and their
response to chemoembolization therapy. Quantitative image-guided
31P magnetic resonance spectroscopy. Invest Radiol. 27:456–464.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yuan Z, Ye XD, Dong S, Xu LC and Xiao XS:
Evaluation of early imaging response after chemoembolization of
hepatocellular carcinoma by phosphorus-31 magnetic resonance
spectroscopy-initial experience. J Vasc Interv Radiol.
22:1166–1173. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yuan Z, Li WT, Ye XD, Zhu HY and Peng WJ:
Novel functional magnetic resonance imaging biomarkers for
assessing response to therapy in hepatocellular carcinoma. Clin
Transl Oncol. 16:599–605. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Donati OF, Hany TF, Reiner CS, von
Schulthess GK, Marincek B, Seifert B and Weishaupt D: Value of
retrospective fusion of PET and MR images in detection of hepatic
metastases: Comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced
MRI. J Nucl Med. 51:692–699. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Beiderwellen K, Gomez B, Buchbender C,
Hartung V, Poeppel TD, Nensa F, Kuehl H, Bockisch A and Lauenstein
TC: Depiction and characterization of liver lesions in whole body
[18F]-FDG PET/MRI. Eur J Radiol. 82:e669–e675. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Catalano OA, Rosen BR, Sahani DV, Hahn PF,
Guimaraes AR, Vangel MG, Nicolai E, Soricelli A and Salvatore M:
Clinical impact of PET/MR imaging in patients with cancer
undergoing same-day PET/CT: Initial experience in 134 patients: a
hypothesis-generating exploratory study. Radiology. 269:857–869.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Nielsen K, Scheffer HJ, Pieters IC, van
Tilborg AA, van Waesberghe JH, Oprea-Lager DE, Meijerink MR,
Kazemier G, Hoekstra OS, Schreurs HW, et al: The use of PET-MRI in
the follow-up after radiofrequency- and microwave ablation of
colorectal liver metastases. BMC Med Imaging. 14:272014. View Article : Google Scholar : PubMed/NCBI
|