|
1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Barua A, Bradaric MJ, Kebede T, Espionosa
S, Edassery SL, Bitterman P, Rotmensch J and Luborsky JL:
Anti-tumor and anti-ovarian autoantibodies in women with ovarian
cancer. Am J Reprod Immunol. 57:243–249. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Naora H, Montz FJ, Chai CY and Roden RB:
Aberrant expression of homeobox gene HOXA7 is associated
with müllerian-like differentiation of epithelial ovarian tumors
and the generation of a specific autologous antibody response. Proc
Natl Acad Sci USA. 98:15209–15214. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Karabudak AA, Hafner J, Shetty V, Chen S,
Secord AA, Morse MA and Philip R: Autoantibody biomarkers
identified by proteomics methods distinguish ovarian cancer from
non-ovarian cancer with various CA-125 levels. J Cancer Res Clin
Oncol. 139:1757–1770. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gagnon A, Kim JH, Schorge JO, Ye B, Liu B,
Hasselblatt K, Welch WR, Bandera CA and Mok SC: Use of a
combination of approaches to identify and validate relevant
tumor-associated antigens and their corresponding autoantibodies in
ovarian cancer patients. Clin Cancer Res. 14:764–771. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Santucci L, Bruschi M, Ghiggeri GM and
Candiano G: The latest advancements in proteomic two-dimensional
gel electrophoresis analysis applied to biological samples. Methods
Mol Biol. 1243:103–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lee JM and Kohn EC: Proteomics as a
guiding tool for more effective personalized therapy. Ann Oncol.
21:(Suppl 7). vii205–vii210. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hays JL, Kim G, Giuroiu I and Kohn EC:
Proteomics and ovarian cancer: Integrating proteomics information
into clinical care. J Proteomics. 73:1864–1872. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Looi KS, Nakayasu ES, Diaz RA, Tan EM,
Almeida IC and Zhang JY: Using proteomic approach to identify
tumor-associated antigens as markers in hepatocellular carcinoma. J
Proteome Res. 7:4004–4012. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Opiteck GJ, Ramirez SM, Jorgenson JW and
Moseley MA III: Comprehensive two-dimensional high-performance
liquid chromatography for the isolation of overexpressed proteins
and proteome mapping. Anal Biochem. 258:349–361. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Davidsson P, Westman A, Puchades M,
Nilsson CL and Blennow K: Characterization of proteins from human
cerebrospinal fluid by a combination of preparative two-dimensional
liquid-phase electrophoresis and matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry. Anal Chem.
71:642–647. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tragas C and Pawliszyn J: On-line coupling
of high performance gel filtration chromatography with imaged
capillary isoelectric focusing using a membrane interface.
Electrophoresis. 21:227–237. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tsugita A, Kawakami T, Uchida T, Sakai T,
Kamo M, Matsui T, Watanabe Y, Morimasa T, Hosokawa K and Toda T:
Proteome analysis of mouse brain: Two-dimensional electrophoresis
profiles of tissue proteins during the course of aging.
Electrophoresis. 21:1853–1871. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Langen H, Takács B, Evers S, Berndt P,
Lahm HW, Wipf B, Gray C and Fountoulakis M: Two-dimensional map of
the proteome of Haemophilus influenzae. Electrophoresis.
21:411–429. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Colvis CM, Duglas-Tabor Y, Werth KB,
Vieira NE, Kowalak JA, Janjani A, Yergey AL and Garland DL:
Tracking pathology with proteomics: Identification of in vivo
degradation products of alphaB-crystallin. Electrophoresis.
21:2219–2227. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jung E, Heller M, Sanchez JC and
Hochstrasser DF: Proteomics meets cell biology: The establishment
of subcellular proteomes. Electrophoresis. 21:3369–3377. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brichory FM, Misek DE, Yim AM, Krause MC,
Giordano TJ, Beer DG and Hanash SM: An immune response manifested
by the common occurrence of annexins I and II autoantibodies and
high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci
USA. 98:9824–9829. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Brichory F, Beer D, Le Naour F, Giordano T
and Hanash S: Proteomics-based identification of protein gene
product 9.5 as a tumor antigen that induces a humoral immune
response in lung cancer. Cancer Res. 61:7908–7912. 2001.PubMed/NCBI
|
|
22
|
Takashima M, Kuramitsu Y, Yokoyama Y,
Iizuka N, Harada T, Fujimoto M, Sakaida I, Okita K, Oka M and
Nakamura K: Proteomic analysis of autoantibodies in patients with
hepatocellular carcinoma. Proteomics. 6:3894–3900. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li L, Chen SH, Yu CH, Li YM and Wang SQ:
Identification of hepatocellular-carcinoma-associated antigens and
autoantibodies by serological proteome analysis combined with
protein microarray. J Proteome Res. 7:611–620. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fujita Y, Nakanishi T, Hiramatsu M,
Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A and Tanigawa N:
Proteomics-based approach identifying autoantibody against
peroxiredoxin VI as a novel serum marker in esophageal squamous
cell carcinoma. Clin Cancer Res. 12:6415–6420. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fujita Y, Nakanishi T, Miyamoto Y,
Hiramatsu M, Mabuchi H, Miyamoto A, Shimizu A, Takubo T and
Tanigawa N: Proteomics- based identification of autoantibody
against heat shock protein 70 as a diagnostic marker in esophageal
squamous cell carcinoma. Cancer Lett. 263:280–290. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang J, Wang K, Zhang J, Liu SS, Dai L
and Zhang JY: Using proteomic approach to identify tumor-associated
proteins as biomarkers in human esophageal squamous cell carcinoma.
J Proteome Res. 10:2863–2872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Peng B, Huang X, Nakayasu ES, Petersen JR,
Qiu S, Almeida IC and Zhang JY: Using immunoproteomics to identify
alpha-enolase as an autoantigen in liver fibrosis. J Proteome Res.
12:1789–1796. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cappello P, Tomaino B, Chiarle R, Ceruti
P, Novarino A, Castagnoli C, Migliorini P, Perconti G, Giallongo A,
Milella M, et al: An integrated humoral and cellular response is
elicited in pancreatic cancer by alpha-enolase, a novel pancreatic
ductal adenocarcinoma-associated antigen. Int J Cancer.
125:639–648. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bini L, Magi B, Marzocchi B, Arcuri F,
Tripodi S, Cintorino M, Sanchez JC, Frutiger S, Hughes G, Pallini
V, et al: Protein expression profiles in human breast ductal
carcinoma and histologically normal tissue. Electrophoresis.
18:2832–2841. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen CN, Chang CC, Su TE, Hsu WM, Jeng YM,
Ho MC, Hsieh FJ, Lee PH, Kuo ML, Lee H, et al: Identification of
calreticulin as a prognosis marker and angiogenic regulator in
human gastric cancer. Ann Surg Oncol. 16:524–533. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Du XL, Hu H, Lin DC, Xia SH, Shen XM,
Zhang Y, Luo ML, Feng YB, Cai Y, Xu X, et al: Proteomic profiling
of proteins dysregulted in Chinese esophageal squamous cell
carcinoma. J Mol Med. 85:863–875. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yom CK, Han W, Kim SW, Kim HS, Shin HC,
Chang JN, Koo M, Noh DY and Moon BI: Clinical significance of
annexin A1 expression in breast cancer. J Breast Cancer.
14:262–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shen D, Nooraie F, Elshimali Y, Lonsberry
V, He J, Bose S, Chia D, Seligson D, Chang HR and Goodglick L:
Decreased expression of annexin A1 is correlated with breast cancer
development and progression as determined by a tissue microarray
analysis. Hum Pathol. 37:1583–1591. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT,
Huang HY, Hua KT and Kuo ML: Annexin A1 is associated with gastric
cancer survival and promotes gastric cancer cell invasiveness
through the formyl peptide receptor/extracellular signal-regulated
kinase/integrin beta-1-binding protein 1 pathway. Cancer.
118:5757–5767. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jorge YC, Mataruco MM, Araújo LP, Rossi
AF, de Oliveira JG, Valsechi MC, Caetano A, Miyazaki K, Fazzio CS,
Thomé JA, et al: Expression of annexin-A1 and galectin-1
anti-inflammatory proteins and mRNA in chronic gastritis and
gastric cancer. Mediators Inflamm. 2013:1528602013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yu G, Wang J, Chen Y, Wang X, Pan J, Li Q
and Xie K: Tissue microarray analysis reveals strong clinical
evidence for a close association between loss of annexin A1
expression and nodal metastasis in gastric cancer. Clin Exp
Metastasis. 25:695–702. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang KL, Wu TT, Resetkova E, Wang H,
Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Hamilton
SR, et al: Expression of annexin A1 in esophageal and
esophagogastric junction adenocarcinomas: Association with poor
outcome. Clin Cancer Res. 12:4598–4604. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hu N, Flaig MJ, Su H, Shou JZ, Roth MJ, Li
WJ, Wang C, Goldstein AM, Li G, Emmert-Buck MR, et al:
Comprehensive characterization of annexin I alterations in
esophageal squamous cell carcinoma. Clin Cancer Res. 10:6013–6022.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Guo C, Liu S and Sun MZ: Potential role of
Anxa1 in cancer. Future Oncol. 9:1773–1793. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lam CY, Yip CW, Poon TC, Cheng CK, Ng EW,
Wong NC, Cheung PF, Lai PB, Ng IO, Fan ST, et al: Identification
and characterization of tropomyosin 3 associated with
granulin-epithelin precursor in human hepatocellular carcinoma.
PLoS One. 7:e403242012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tang HY, Beer LA, Tanyi JL, Zhang R, Liu Q
and Speicher DW: Protein isoform-specific validation defines
multiple chloride intracellular channel and tropomyosin isoforms as
serological biomarkers of ovarian cancer. J Proteomics. 89:165–178.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kinsella MD, Hinrichs B, Cohen C and
Siddiqui MT: Highlighting nuclear membrane staining in thyroid
neoplasms with emerin: Review and diagnostic utility. Diagn
Cytopathol. 41:497–504. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Byrne JA, Tomasetto C, Garnier JM, Rouyer
N, Mattei MG, Bellocq JP, Rio MC and Basset P: A screening method
to identify genes commonly overexpressed in carcinomas and the
identification of a novel complementary DNA sequence. Cancer Res.
55:2896–2903. 1995.PubMed/NCBI
|
|
44
|
Balleine RL, Fejzo MS, Sathasivam P,
Basset P, Clarke CL and Byrne JA: The hD52 (TPD52) gene is a
candidate target gene for events resulting in increased 8q21 copy
number in human breast carcinoma. Genes Chromosomes Cancer.
29:48–57. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang R, Xu J, Saramäki O, Visakorpi T,
Sutherland WM, Zhou J, Sen B, Lim SD, Mabjeesh N, Amin M, et al:
PrLZ, a novel prostate-specific and androgen-responsive gene
of the TPD52 family, amplified in chromosome 8q21.1 and
overexpressed in human prostate cancer. Cancer Res. 64:1589–1594.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rubin MA, Varambally S, Beroukhim R,
Tomlins SA, Rhodes DR, Paris PL, Hofer MD, Storz-Schweizer M,
Kuefer R, Fletcher JA, et al: Overexpression, amplification, and
androgen regulation of TPD52 in prostate cancer. Cancer Res.
64:3814–3822. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Byrne JA, Balleine RL, Fejzo Schoenberg M,
Mercieca J, Chiew YE, Livnat Y, St Heaps L, Peters GB, Byth K,
Karlan BY, et al: Tumor protein D52 (TPD52) is overexpressed and a
gene amplification target in ovarian cancer. Int J Cancer.
117:1049–1054. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shukla S, Pranay A, D'Cruz AK, Chaturvedi
P, Kane SV and Zingde SM: Immunoproteomics reveals that cancer of
the tongue and the gingivobuccal complex exhibit differential
autoantibody response. Cancer Biomark. 5:127–135. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tong YQ, Zhang ZJ, Liu B, Huang J, Liu H,
Liu Y, Guo FJ, Zhou GH, Xie PL, Li YH, et al: Autoantibodies as
potential biomarkers for nasopharyngeal carcinoma. Proteomics.
8:3185–3193. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cohen M, Dromard M and Petignat P: Heat
shock proteins in ovarian cancer: A potential target for therapy.
Gynecol Oncol. 119:164–166. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tavaria M, Gabriele T, Kola I and Anderson
RL: A hitchhiker's guide to the human Hsp70 family. Cell Stress
Chaperones. 1:23–28. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jäättelä M: Escaping cell death: Survival
proteins in cancer. Exp Cell Res. 248:30–43. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Aghdassi A, Phillips P, Dudeja V,
Dhaulakhandi D, Sharif R, Dawra R, Lerch MM and Saluja A: Heat
shock protein 70 increases tumorigenicity and inhibits apoptosis in
pancreatic adenocarcinoma. Cancer Res. 67:616–625. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ralhan R and Kaur J: Differential
expression of Mr 70,000 heat shock protein in normal, premalignant,
and malignant human uterine cervix. Clin Cancer Res. 1:1217–1222.
1995.PubMed/NCBI
|
|
55
|
Lazaris AC, Theodoropoulos GE, Aroni K,
Saetta A and Davaris PS: Immunohistochemical expression of C-myc
oncogene, heat shock protein 70 and HLA-DR molecules in malignant
cutaneous melanoma. Virchows Arch. 426:461–467. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kaur J, Srivastava A and Ralhan R:
Expression of 70-kDa heat shock protein in oral lesions: Marker of
biological stress or pathogenicity. Oral Oncol. 34:496–501. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Alexiou D, Karayiannakis AJ, Syrigos KN,
Zbar A, Sekara E, Michail P, Rosenberg T and Diamantis T: Clinical
significance of serum levels of E-selectin, intercellular adhesion
molecule-1, and vascular cell adhesion molecule-1 in gastric cancer
patients. Am J Gastroenterol. 98:478–485. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Abe M, Manola JB, Oh WK, Parslow DL,
George DJ, Austin CL and Kantoff PW: Plasma levels of heat shock
protein 70 in patients with prostate cancer: A potential biomarker
for prostate cancer. Clin Prostate Cancer. 3:49–53. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chuma M, Sakamoto M, Yamazaki K, Ohta T,
Ohki M, Asaka M and Hirohashi S: Expression profiling in multistage
hepatocarcinogenesis: Identification of HSP70 as a molecular marker
of early hepatocellular carcinoma. Hepatology. 37:198–207. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nanbu K, Konishi I, Mandai M, Kuroda H,
Hamid AA, Komatsu T and Mori T: Prognostic significance of heat
shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer
Detect Prev. 22:549–555. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ciocca DR, Clark GM, Tandon AK, Fuqua SA,
Welch WJ and McGuire WL: Heat shock protein hsp70 in patients with
axillary lymph node-negative breast cancer: Prognostic
implications. J Natl Cancer Inst. 85:570–574. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Thanner F, Sütterlin MW, Kapp M, Rieger L,
Kristen P, Dietl J, Gassel AM and Müller T: Heat-shock protein 70
as a prognostic marker in node-negative breast cancer. Anticancer
Res. 23:1057–1062. 2003.PubMed/NCBI
|
|
63
|
Thomas X, Campos L, Mounier C, Cornillon
J, Flandrin P, Le QH, Piselli S and Guyotat D: Expression of
heat-shock proteins is associated with major adverse prognostic
factors in acute myeloid leukemia. Leuk Res. 29:1049–1058. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sun XF, Zhang H, Carstensen J, Jansson A
and Nordenskjöld B: Heat shock protein 72/73 in relation to
cytoplasmic p53 expression and prognosis in colorectal
adenocarcinomas. Int J Cancer. 74:600–604. 1997. View Article : Google Scholar : PubMed/NCBI
|