|
1
|
Inui A: Cancer anorexia-cachexia syndrome:
Current issues in research and management. CA Cancer J Clin.
52:72–91. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fearon K, Strasser F, Anker SD, Bosaeus I,
Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N,
Mantovani G, et al: Definition and classification of cancer
cachexia: An international consensus. Lancet Oncol. 12:489–495.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Argilés JM, Moore-Carrasco R, Fuster G,
Busquets S and López-Soriano FJ: Cancer cachexia: The molecular
mechanisms. Int J Biochem Cell Biol. 35:405–409. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tisdale MJ: Cachexia in cancer patients.
Nat Rev Cancer. 2:862–871. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Costelli P and Baccino FM: Cancer
cachexia: From experimental models to patient management. Curr Opin
Clin Nutr Metab Care. 3:177–181. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tisdale MJ: Mechanisms of cancer cachexia.
Physiol Rev. 89:381–410. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Argilés JM, Busquets S, Stemmler B and
López-Soriano FJ: Cancer cachexia: Understanding the molecular
basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ambrus JL, Ambrus CM, Mink IB and Pickren
JW: Causes of death in cancer patients. J Med. 6:61–64.
1975.PubMed/NCBI
|
|
9
|
Burch GE, Phillips JH and Ansari A: The
cachetic heart. A clinico-pathologic, electrocardiographic and
roentgenographic entity. Dis Chest. 54:403–409. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ewer MS and Ewer SM: Cardiotoxicity of
anticancer treatments. Nat Rev Cardiol. 12:547–558. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kazemi-Bajestani SM, Becher H, Fassbender
K, Chu Q and Baracos VE: Concurrent evolution of cancer cachexia
and heart failure: Bilateral effects exist. J Cachexia Sarcopenia
Muscle. 5:95–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Murphy KT: The pathogenesis and treatment
of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ
Physiol. 310:H466–H477. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tian M, Nishijima Y, Asp ML, Stout MB,
Reiser PJ and Belury MA: Cardiac alterations in cancer-induced
cachexia in mice. Int J Oncol. 37:347–353. 2010.PubMed/NCBI
|
|
14
|
Shadfar S, Couch ME, McKinney KA,
Weinstein LJ, Yin X, Rodríguez JE, Guttridge DC and Willis M: Oral
resveratrol therapy inhibits cancer-induced skeletal muscle and
cardiac atrophy in vivo. Nutr Cancer. 63:749–762. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cosper PF and Leinwand LA: Cancer causes
cardiac atrophy and autophagy in a sexually dimorphic manner.
Cancer Res. 71:1710–1720. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Matsuyama T, Ishikawa T, Okayama T, Oka K,
Adachi S, Mizushima K, Kimura R, Okajima M, Sakai H, Sakamoto N, et
al: Tumor inoculation site affects the development of cancer
cachexia and muscle wasting. Int J Cancer. 137:2558–2565. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Springer J, Tschirner A, Haghikia A, von
Haehling S, Lal H, Grzesiak A, Kaschina E, Palus S, Pötsch M, von
Websky K, et al: Prevention of liver cancer cachexia-induced
cardiac wasting and heart failure. Eur Heart J. 35:932–941. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tian M, Asp ML, Nishijima Y and Belury MA:
Evidence for cardiac atrophic remodeling in cancer-induced cachexia
in mice. Int J Oncol. 39:1321–1326. 2011.PubMed/NCBI
|
|
19
|
Wysong A, Couch M, Shadfar S, Li L,
Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, et
al: NF-κB inhibition protects against tumor-induced cardiac atrophy
in vivo. Am J Pathol. 178:1059–1068. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sjöström M, Wretling ML, Karlberg I, Edén
E and Lundholm K: Ultrastructural changes and enzyme activities for
energy production in hearts concomitant with tumor-associated
malnutrition. J Surg Res. 42:304–313. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schäfer M, Oeing CU, Rohm M, Baysal-Temel
E, Lehmann LH, Bauer R, Volz HC, Boutros M, Sohn D, Sticht C, et
al: Ataxin-10 is part of a cachexokine cocktail triggering cardiac
metabolic dysfunction in cancer cachexia. Mol Metab. 5:67–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
van der Velden J, Merkus D, Klarenbeek BR,
James AT, Boontje NM, Dekkers DH, Stienen GJ, Lamers JM and Duncker
DJ: Alterations in myofilament function contribute to left
ventricular dysfunction in pigs early after myocardial infarction.
Circ Res. 95:e85–e95. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bonne G, Carrier L, Richard P, Hainque B,
Tesson F, Komajda M and Schwartz K: Génétique des cardiomyopathies
hypertrophiques. Med Sci. 14:1054–1066. 1998.
|
|
24
|
Korte FS, Herron TJ, Rovetto MJ and
McDonald KS: Power output is linearly related to MyHC content in
rat skinned myocytes and isolated working hearts. Am J Physiol
Heart Circ Physiol. 289:H801–H812. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ashrafian H, Frenneaux MP and Opie LH:
Metabolic mechanisms in heart failure. Circulation. 116:434–448.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Manne ND, Lima M, Enos RT, Wehner P,
Carson JA and Blough E: Altered cardiac muscle mTOR regulation
during the progression of cancer cachexia in the
ApcMin/+ mouse. Int J Oncol. 42:2134–2140.
2013.PubMed/NCBI
|
|
27
|
Palus S, von Haehling S, Flach VC,
Tschirner A, Doehner W, Anker SD and Springer J: Simvastatin
reduces wasting and improves cardiac function as well as outcome in
experimental cancer cachexia. Int J Cardiol. 168:3412–3418. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Trobec K, Palus S, Tschirner A, von
Haehling S, Doehner W, Lainscak M, Anker SD and Springer J:
Rosiglitazone reduces body wasting and improves survival in a rat
model of cancer cachexia. Nutrition. 30:1069–1075. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhou X, Wang JL, Lu J, Song Y, Kwak KS,
Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, et al: Reversal
of cancer cachexia and muscle wasting by ActRIIB antagonism leads
to prolonged survival. Cell. 142:531–543. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mühlfeld C, Das SK, Heinzel FR, Schmidt A,
Post H, Schauer S, Papadakis T, Kummer W and Hoefler G: Cancer
induces cardiomyocyte remodeling and hypoinnervation in the left
ventricle of the mouse heart. PLoS One. 6:e204242011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hinch EC, Sullivan-Gunn MJ, Vaughan VC,
McGlynn MA and Lewandowski PA: Disruption of pro-oxidant and
antioxidant systems with elevated expression of the ubiquitin
proteosome system in the cachectic heart muscle of nude mice. J
Cachexia Sarcopenia Muscle. 4:287–293. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Borges FH, Marinello PC, Cecchini AL,
Blegniski FP, Guarnier FA and Cecchini R: Oxidative and proteolytic
profiles of the right and left heart in a model of cancer-induced
cardiac cachexia. Pathophysiology. 21:257–265. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Argilés JM, Fontes-Oliveira CC, Toledo M,
López-Soriano FJ and Busquets S: Cachexia: A problem of energetic
inefficiency. J Cachexia Sarcopenia Muscle. 5:279–286. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bosaeus I, Daneryd P, Svanberg E and
Lundholm K: Dietary intake and resting energy expenditure in
relation to weight loss in unselected cancer patients. Int J
Cancer. 93:380–383. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lindmark L, Bennegård K, Edén E, Ekman L,
Scherstén T, Svaninger G and Lundholm K: Resting energy expenditure
in malnourished patients with and without cancer. Gastroenterology.
87:402–408. 1984.PubMed/NCBI
|
|
36
|
Aon MA and Cortassa S: Mitochondrial
network energetics in the heart. Wiley Interdiscip Rev Syst Biol
Med. 4:599–613. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal
JS and Stanley WC: Myocardial fatty acid metabolism in health and
disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Madrazo JA and Kelly DP: The PPAR trio:
Regulators of myocardial energy metabolism in health and disease. J
Mol Cell Cardiol. 44:968–975. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Drott C, Waldenström A and Lundholm K:
Cardiac sensitivity and responsiveness to beta-adrenergic
stimulation in experimental cancer and undernutrition. J Mol Cell
Cardiol. 19:675–683. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Drott C and Lundholm K: Glucose uptake and
amino acid metabolism in perfused hearts from tumor-bearing rats. J
Surg Res. 49:62–68. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Montel-Hagen A, Blanc L, Boyer-Clavel M,
Jacquet C, Vidal M, Sitbon M and Taylor N: The Glut1 and Glut4
glucose transporters are differentially expressed during perinatal
and postnatal erythropoiesis. Blood. 112:4729–4738. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yasumoto K, Mukaida N, Harada A, Kuno K,
Akiyama M, Nakashima E, Fujioka N, Mai M, Kasahara T,
Fujimoto-Ouchi K, et al: Molecular analysis of the cytokine network
involved in cachexia in colon 26 adenocarcinoma-bearing mice.
Cancer Res. 55:921–927. 1995.PubMed/NCBI
|
|
43
|
Kanda T and Takahashi T: Interleukin-6 and
cardiovascular diseases. Jpn Heart J. 45:183–193. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Saito S, Aikawa R, Shiojima I, Nagai R,
Yazaki Y and Komuro I: Endothelin-1 induces expression of fetal
genes through the interleukin-6 family of cytokines in cardiac
myocytes. FEBS Lett. 456:103–107. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pajak B, Orzechowska S, Pijet B, Pijet M,
Pogorzelska A, Gajkowska B and Orzechowski A: Crossroads of
cytokine signaling - the chase to stop muscle cachexia. J Physiol
Pharmacol. 59:(Suppl 9). 251–264. 2008.PubMed/NCBI
|
|
46
|
Bodine SC, Latres E, Baumhueter S, Lai VK,
Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K,
et al: Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Costelli P, Carbó N, Tessitore L, Bagby
GJ, Lopez-Soriano FJ, Argilés JM and Baccino FM: Tumor necrosis
factor-alpha mediates changes in tissue protein turnover in a rat
cancer cachexia model. J Clin Invest. 92:2783–2789. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Johnston AJ, Murphy KT, Jenkinson L, Laine
D, Emmrich K, Faou P, Weston R, Jayatilleke KM, Schloegel J, Talbo
G, et al: Targeting of Fn14 prevents cancer-induced cachexia and
prolongs survival. Cell. 162:1365–1378. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Marin-Corral J, Fontes CC, Pascual-Guardia
S, Sanchez F, Olivan M, Argilés JM, Busquets S, López-Soriano FJ
and Barreiro E: Redox balance and carbonylated proteins in limb and
heart muscles of cachectic rats. Antioxid Redox Signal. 12:365–380.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Busquets S, Fuster G, Ametller E, Olivan
M, Figueras M, Costelli P, Carbó N, Argilés JM and López-Soriano
FJ: Resveratrol does not ameliorate muscle wasting in different
types of cancer cachexia models. Clin Nutr. 26:239–244. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gould DW, Lahart I, Carmichael AR,
Koutedakis Y and Metsios GS: Cancer cachexia prevention via
physical exercise: Molecular mechanisms. J Cachexia Sarcopenia
Muscle. 4:111–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mantovani G, Madeddu C, Macciò A,
Gramignano G, Lusso MR, Massa E, Astara G and Serpe R:
Cancer-related anorexia/cachexia syndrome and oxidative stress: An
innovative approach beyond current treatment. Cancer Epidemiol
Biomarkers Prev. 13:1651–1659. 2004.PubMed/NCBI
|
|
53
|
Min K, Kwon OS, Smuder AJ, Wiggs MP,
Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN,
et al: Increased mitochondrial emission of reactive oxygen species
and calpain activation are required for doxorubicin-induced cardiac
and skeletal muscle myopathy. J Physiol. 593:2017–2036. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Springer J, Tschirner A, Hartman K, von
Haehling S, Anker SD and Doehner W: The xanthine oxidase inhibitor
oxypurinol reduces cancer cachexia-induced cardiomyopathy. Int J
Cardiol. 168:3527–3531. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Scott JM, Khakoo A, Mackey JR, Haykowsky
MJ, Douglas PS and Jones LW: Modulation of anthracycline-induced
cardiotoxicity by aerobic exercise in breast cancer: Current
evidence and underlying mechanisms. Circulation. 124:642–650. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Asp ML, Tian M, Wendel AA and Belury MA:
Evidence for the contribution of insulin resistance to the
development of cachexia in tumor-bearing mice. Int J Cancer.
126:756–763. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gray S and Kim JK: New insights into
insulin resistance in the diabetic heart. Trends Endocrinol Metab.
22:394–403. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang L, Jaswal JS, Ussher JR,
Sankaralingam S, Wagg C, Zaugg M and Lopaschuk GD: Cardiac
insulin-resistance and decreased mitochondrial energy production
precede the development of systolic heart failure after
pressure-overload hypertrophy. Circ Heart Fail. 6:1039–1048. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Padrão AI, Moreira-Gonçalves D, Oliveira
PA, Teixeira C, Faustino-Rocha AI, Helguero L, Vitorino R, Santos
LL, Amado F, Duarte JA, et al: Endurance training prevents TWEAK
but not myostatin-mediated cardiac remodelling in cancer cachexia.
Arch Biochem Biophys. 567:13–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Amirouche A, Durieux AC, Banzet S,
Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A and
Freyssenet D: Down-regulation of Akt/mammalian target of rapamycin
signaling pathway in response to myostatin overexpression in
skeletal muscle. Endocrinology. 150:286–294. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Morissette MR, Stricker JC, Rosenberg MA,
Buranasombati C, Levitan EB, Mittleman MA and Rosenzweig A: Effects
of myostatin deletion in aging mice. Aging Cell. 8:573–583. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Heineke J, Auger-Messier M, Xu J, Sargent
M, York A, Welle S and Molkentin JD: Genetic deletion of myostatin
from the heart prevents skeletal muscle atrophy in heart failure.
Circulation. 121:419–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Willis MS, Schisler JC, Li L, Rodríguez
JE, Hilliard EG, Charles PC and Patterson C: Cardiac muscle ring
finger-1 increases susceptibility to heart failure in vivo. Circ
Res. 105:80–88. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Willis MS, Rojas M, Li L, Selzman CH, Tang
RH, Stansfield WE, Rodriguez JE, Glass DJ and Patterson C: Muscle
ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart
Circ Physiol. 296:H997–H1006. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li HH, Kedar V, Zhang C, McDonough H, Arya
R, Wang DZ and Patterson C: Atrogin-1/muscle atrophy F-box inhibits
calcineurin-dependent cardiac hypertrophy by participating in an
SCF ubiquitin ligase complex. J Clin Invest. 114:1058–1071. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yamamoto Y, Hoshino Y, Ito T, Nariai T,
Mohri T, Obana M, Hayata N, Uozumi Y, Maeda M, Fujio Y, et al:
Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via
p38-MAP kinase in cardiac myocytes. Cardiovasc Res. 79:89–96. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Willis MS, Bevilacqua A, Pulinilkunnil T,
Kienesberger P, Tannu M and Patterson C: The role of ubiquitin
ligases in cardiac disease. J Mol Cell Cardiol. 71:43–53. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Masiero E and Sandri M: Autophagy
inhibition induces atrophy and myopathy in adult skeletal muscles.
Autophagy. 6:307–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Musolino V, Palus S, Tschirner A, Drescher
C, Gliozzi M, Carresi C, Vitale C, Muscoli C, Doehner W, von
Haehling S, et al: Megestrol acetate improves cardiac function in a
model of cancer cachexia-induced cardiomyopathy by autophagic
modulation. J Cachexia Sarcopenia Muscle. 7:555–566. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Milan G, Romanello V, Pescatore F, Armani
A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, et
al: Regulation of autophagy and the ubiquitin-proteasome system by
the FoxO transcriptional network during muscle atrophy. Nat Commun.
6:66702015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Judge SM, Wu CL, Beharry AW, Roberts BM,
Ferreira LF, Kandarian SC and Judge AR: Genome-wide identification
of FoxO-dependent gene networks in skeletal muscle during C26
cancer cachexia. BMC Cancer. 14:9972014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Skurk C, Izumiya Y, Maatz H, Razeghi P,
Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, et
al: The FOXO3a transcription factor regulates cardiac myocyte size
downstream of AKT signaling. J Biol Chem. 280:20814–20823. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cai D, Frantz JD, Tawa NE Jr, Melendez PA,
Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, et
al: IKKbeta/NF-kappaB activation causes severe muscle wasting in
mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li H, Malhotra S and Kumar A: Nuclear
factor-kappa B signaling in skeletal muscle atrophy. J Mol Med
(Berl). 86:1113–1126. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Razeghi P, Wang ME, Youker KA, Golfman L,
Stepkowski S and Taegtmeyer H: Lack of NF-kappaB1 (p105/p50)
attenuates unloading-induced downregulation of PPARalpha and
PPARalpha-regulated gene expression in rodent heart. Cardiovasc
Res. 74:133–139. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sack MN, Rader TA, Park S, Bastin J,
McCune SA and Kelly DP: Fatty acid oxidation enzyme gene expression
is downregulated in the failing heart. Circulation. 94:2837–2842.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shao D, Oka S, Liu T, Zhai P, Ago T,
Sciarretta S, Li H and Sadoshima J: A redox-dependent mechanism for
regulation of AMPK activation by Thioredoxin1 during energy
starvation. Cell Metab. 19:232–245. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li YY, Chen D, Watkins SC and Feldman AM:
Mitochondrial abnormalities in tumor necrosis factor-alpha-induced
heart failure are associated with impaired DNA repair activity.
Circulation. 104:2492–2497. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hamblin M, Chang L, Fan Y, Zhang J and
Chen YE: PPARs and the cardiovascular system. Antioxid Redox
Signal. 11:1415–1452. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gielen S, Schuler G and Adams V:
Cardiovascular effects of exercise training: Molecular mechanisms.
Circulation. 122:1221–1238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Holloway TM, Bloemberg D, da Silva ML,
Simpson JA, Quadrilatero J and Spriet LL: High intensity interval
and endurance training have opposing effects on markers of heart
failure and cardiac remodeling in hypertensive rats. PLoS One.
10:e01211382015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Puhl SL, Müller A, Wagner M, Devaux Y,
Böhm M, Wagner DR and Maack C: Exercise attenuates inflammation and
limits scar thinning after myocardial infarction in mice. Am J
Physiol Heart Circ Physiol. 309:H345–H359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wisløff U, Loennechen JP, Falck G, Beisvag
V, Currie S, Smith G and Ellingsen O: Increased contractility and
calcium sensitivity in cardiac myocytes isolated from endurance
trained rats. Cardiovasc Res. 50:495–508. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Burniston JG: Adaptation of the rat
cardiac proteome in response to intensity-controlled endurance
exercise. Proteomics. 9:106–115. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rafalski K, Abdourahman A and Edwards JG:
Early adaptations to training: Upregulation of alpha-myosin heavy
chain gene expression. Med Sci Sports Exerc. 39:75–82. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Alves CR, da Cunha TF, da Paixão NA and
Brum PC: Aerobic exercise training as therapy for cardiac and
cancer cachexia. Life Sci. 125:9–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gueritat J, Lefeuvre-Orfila L, Vincent S,
Cretual A, Ravanat JL, Gratas-Delamarche A, Rannou-Bekono F and
Rebillard A: Exercise training combined with antioxidant
supplementation prevents the antiproliferative activity of their
single treatment in prostate cancer through inhibition of redox
adaptation. Free Radic Biol Med. 77:95–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Goh J, Tsai J, Bammler TK, Farin FM,
Endicott E and Ladiges WC: Exercise training in transgenic mice is
associated with attenuation of early breast cancer growth in a
dose-dependent manner. PLoS One. 8:e801232013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Deuster PA, Morrison SD and Ahrens RA:
Endurance exercise modifies cachexia of tumor growth in rats. Med
Sci Sports Exerc. 17:385–392. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
McGinnis GR, Ballmann C, Peters B,
Nanayakkara G, Roberts M, Amin R and Quindry JC: Interleukin-6
mediates exercise preconditioning against myocardial ischemia
reperfusion injury. Am J Physiol Heart Circ Physiol.
308:H1423–H1433. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Petersen AM and Pedersen BK: The
anti-inflammatory effect of exercise. J Appl Physiol 1985.
98:1154–1162. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rodriguez J, Fernández-Verdejo R, Pierre
N, Priem F and Francaux M: Endurance training attenuates catabolic
signals induced by TNF-α in muscle of mice. Med Sci Sports Exerc.
48:227–234. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gomes EC, Silva AN and de Oliveira MR:
Oxidants, antioxidants, and the beneficial roles of
exercise-induced production of reactive species. Oxid Med Cell
Longev. 2012:7561322012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rebillard A, Lefeuvre-Orfila L, Gueritat J
and Cillard J: Prostate cancer and physical activity: Adaptive
response to oxidative stress. Free Radic Biol Med. 60:115–124.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chicco AJ, Schneider CM and Hayward R:
Voluntary exercise protects against acute doxorubicin
cardiotoxicity in the isolated perfused rat heart. Am J Physiol
Regul Integr Comp Physiol. 289:R424–R431. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Powers SK, Morton AB, Ahn B and Smuder AJ:
Redox control of skeletal muscle atrophy. Free Radic Biol Med.
98:208–217. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ellison GM, Waring CD, Vicinanza C and
Torella D: Physiological cardiac remodelling in response to
endurance exercise training: Cellular and molecular mechanisms.
Heart. 98:5–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Constantinou C, de Fontes Oliveira CC,
Mintzopoulos D, Busquets S, He J, Kesarwani M, Mindrinos M, Rahme
LG, Argilés JM and Tzika AA: Nuclear magnetic resonance in
conjunction with functional genomics suggests mitochondrial
dysfunction in a murine model of cancer cachexia. Int J Mol Med.
27:15–24. 2011.PubMed/NCBI
|
|
100
|
Coffey VG and Hawley JA: The molecular
bases of training adaptation. Sports Med. 37:737–763. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Scarpulla RC: Transcriptional activators
and coactivators in the nuclear control of mitochondrial function
in mammalian cells. Gene. 286:81–89. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Iemitsu M, Miyauchi T, Maeda S, Tanabe T,
Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M and
Yamaguchi I: Aging-induced decrease in the PPAR-alpha level in
hearts is improved by exercise training. Am J Physiol Heart Circ
Physiol. 283:H1750–H1760. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Coven DL, Hu X, Cong L, Bergeron R,
Shulman GI, Hardie DG and Young LH: Physiological role of
AMP-activated protein kinase in the heart: Graded activation during
exercise. Am J Physiol Endocrinol Metab. 285:E629–E636. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kraniou GN, Cameron-Smith D and Hargreaves
M: Acute exercise and GLUT4 expression in human skeletal muscle:
Influence of exercise intensity. J Appl Physiol 1985. 101:934–937.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
DeBosch B, Treskov I, Lupu TS, Weinheimer
C, Kovacs A, Courtois M and Muslin AJ: Akt1 is required for
physiological cardiac growth. Circulation. 113:2097–2104. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
McMullen JR: Role of insulin-like growth
factor 1 and phosphoinositide 3-kinase in a setting of heart
disease. Clin Exp Pharmacol Physiol. 35:349–354. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
McMullen JR, Amirahmadi F, Woodcock EA,
Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang
Y, Shioi T, et al: Protective effects of exercise and
phosphoinositide 3-kinase(p110alpha) signaling in dilated and
hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 104:612–617.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Santini MP, Tsao L, Monassier L,
Theodoropoulos C, Carter J, Lara-Pezzi E, Slonimsky E, Salimova E,
Delafontaine P, Song YH, et al: Enhancing repair of the mammalian
heart. Circ Res. 100:1732–1740. 2007. View Article : Google Scholar : PubMed/NCBI
|