|
1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Szekeres T and Novotny L: New targets and
drugs in cancer chemotherapy. Med Princ Pract. 11:117–125. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu ES, Oduyebo T, Cobb LP, Cholakian D,
Kong X, Fader AN, Levinson KL, Tanner EJ III, Stone RL, Piotrowski
A, et al: Lymphopenia and its association with survival in patients
with locally advanced cervical cancer. Gynecol Oncol. 140:76–82.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sideris S, Aoun F, Zanaty M, Martinez NC,
Latifyan S, Awada A and Gil T: Efficacy of weekly paclitaxel
treatment as a single agent chemotherapy following first-line
cisplatin treatment in urothelial bladder cancer. Mol Clin Oncol.
4:1063–1067. 2016.PubMed/NCBI
|
|
6
|
Dilruba S and Kalayda GV: Platinum-based
drugs: Past, present and future. Cancer Chemother Pharmacol.
77:1103–1124. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pan X, Zhang X, Sun H, Zhang J, Yan M and
Zhang H: Autophagy inhibition promotes 5-fluorouraci-induced
apoptosis by stimulating ROS formation in human non-small cell lung
cancer A549 cells. PLoS One. 8:e566792013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Emadi A, Jones RJ and Brodsky RA:
Cyclophosphamide and cancer: Golden anniversary. Nat Rev Clin
Oncol. 6:638–647. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Vanhoefer U, Harstrick A, Achterrath W,
Cao S, Seeber S and Rustum YM: Irinotecan in the treatment of
colorectal cancer: Clinical overview. J Clin Oncol. 19:1501–1518.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu T, Qin L, Zhu Z, Wang X, Liu Y, Fan Y,
Zhong S, Wang X, Zhang X, Xia L, et al: MicroRNA-31 functions as a
tumor suppressor and increases sensitivity to mitomycin-C in
urothelial bladder cancer by targeting integrin α5. Oncotarget.
7:27445–27457. 2016.PubMed/NCBI
|
|
11
|
Bae YJ, Yoon YI, Yoon TJ and Lee HJ:
Ultrasound-guided delivery of siRNA and a chemotherapeutic drug by
using microbubble complexes: In vitro and in vivo evaluations in a
prostate cancer model. Korean J Radiol. 17:497–508. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhou Q, Ye M, Lu Y, Zhang H, Chen Q, Huang
S and Su S: Curcumin improves the tumoricidal effect of mitomycin C
by suppressing ABCG2 expression in stem cell-like breast cancer
cells. PLoS One. 10:e01366942015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wei Z, Liang L, Junsong L, Rui C, Shuai C,
Guanglin Q, Shicai H, Zexing W, Jin W, Xiangming C, et al: The
impact of insulin on chemotherapeutic sensitivity to 5-fluorouracil
in gastric cancer cell lines SGC7901, MKN45 and MKN28. J Exp Clin
Cancer Res. 34:642015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Talekar M, Ouyang Q, Goldberg MS and Amiji
MM: Cosilencing of PKM-2 and MDR-1 sensitizes multidrug-resistant
ovarian cancer cells to paclitaxel in a murine model of ovarian
cancer. Mol Cancer Ther. 14:1521–1531. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kenicer J, Spears M, Lyttle N, Taylor KJ,
Liao L, Cunningham CA, Lambros M, MacKay A, Yao C, Reis-Filho J, et
al: Molecular characterisation of isogenic taxane resistant cell
lines identify novel drivers of drug resistance. BMC Cancer.
14:762–772. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Martín AJ, Alfonso PG, Rupérez AB and
Jiménez MM: Nab-paclitaxel plus gemcitabine as first-line
palliative chemotherapy in a patient with metastatic pancreatic
cancer with Eastern Cooperative Oncology Group performance status
of 2. Oncol Lett. 12:727–730. 2016.PubMed/NCBI
|
|
17
|
Ebara S, Kobayashi Y, Sasaki K, Araki M,
Sugimoto M, Wada K, Fujio K, Takamoto A, Watanabe T, Yanai H, et
al: A case of metastatic urachal cancer including a neuroendocrine
component treated with gemcitabine, cisplatin and paclitaxel
combination chemotherapy. Acta Med Okayama. 70:223–227.
2016.PubMed/NCBI
|
|
18
|
Kalaghchi B, Abdi R, Amouzegar-Hashemi F,
Esmati E and Alikhasi A: Concurrent chemoradiation with weekly
paclitaxel and cisplatin for locally advanced cervical cancer.
Asian Pac J Cancer Prev. 17:287–291. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yilmaz A, Alp E, Onen HI and Menevse S:
Reduced BCL2 and CCND1 mRNA expression in human cervical cancer
HeLa cells treated with a combination of everolimus and paclitaxel.
Contemp Oncol (Pozn). 20:28–32. 2016.PubMed/NCBI
|
|
20
|
Trendowski M, Christen TD, Acquafondata C
and Fondy TP: Effects of cytochalasin congeners,
microtubule-directed agents, and doxorubicin alone or in
combination against human ovarian carcinoma cell lines in vitro.
BMC Cancer. 15:632–645. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
van der Noll R, Marchetti S, Steeghs N,
Beijnen JH, Mergui-Roelvink MW, Harms E, Rehorst H, Sonke GS and
Schellens JH: Long-term safety and anti-tumour activity of olaparib
monotherapy after combination with carboplatin and paclitaxel in
patients with advanced breast, ovarian or fallopian tube cancer. Br
J Cancer. 113:396–402. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang L, Chen S, Yang W, Xu B, Huang T,
Yang H, Zheng H, Wang Y, Song E, Zhang J, et al: Efficacy and
safety analysis of trastuzumab and paclitaxel based regimen plus
carboplatin or epirubicin as neoadjuvant therapy for clinical stage
II–III, HER2-positive breast cancer patients: A phase 2,
open-label, multicenter, randomized trial. Oncotarget.
6:18683–18692. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xiao B, Si X, Han MK, Viennois E, Zhang M
and Merlin D: Co-delivery of camptothecin and curcumin by cationic
polymeric nanoparticles for synergistic colon cancer combination
chemotherapy. J Mater Chem B Mater Biol Med. 3:7724–7733. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tsuda N, Watari H and Ushijima K:
Chemotherapy and molecular targeting therapy for recurrent cervical
cancer. Chin J Cancer Res. 28:241–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schwab CL, English DP, Roque DM and Santin
AD: Taxanes: Their impact on gynecologic malignancy. Anticancer
Drugs. 25:522–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wani MC and Horwitz SB: Nature as a
remarkable chemist: A personal story of the discovery and
development of Taxol. Anticancer Drugs. 25:482–487. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Weaver BA: How Taxol/paclitaxel kills
cancer cells. Mol Biol Cell. 25:2677–2681. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang D, Yang R, Wang S and Dong Z:
Paclitaxel: New uses for an old drug. Drug Des Devel Ther.
8:279–284. 2014.PubMed/NCBI
|
|
29
|
Takashima S, Kiyoto S, Takahashi M, Hara
F, Aogi K, Ohsumi S, Mukai R and Fujita Y: Clinical experience with
nanoparticle albumin-bound paclitaxel, a novel taxane anticancer
agent, and management of adverse events in females with breast
cancer. Oncol Lett. 9:1822–1826. 2015.PubMed/NCBI
|
|
30
|
Chen NC, Chyau CC, Lee YJ, Tseng HC and
Chou FP: Promotion of mitotic catastrophe via activation of PTEN by
paclitaxel with supplement of mulberry water extract in bladder
cancer cells. Sci Rep. 6:204172016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhong ZF, Tan W, Wang SP, Qiang WA and
Wang YT: Anti-proliferative activity and cell cycle arrest induced
by evodiamine on paclitaxel-sensitive and -resistant human ovarian
cancer cells. Sci Rep. 5:164152015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu K, Cang S, Ma Y and Chiao JW:
Synergistic effect of paclitaxel and epigenetic agent phenethyl
isothiocyanate on growth inhibition, cell cycle arrest and
apoptosis in breast cancer cells. Cancer Cell Int. 13:102013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Takatori E, Shoji T, Kumagai S, Sawai T,
Kurose A and Sugiyama T: Are platinum agents, paclitaxel and
irinotecan effective for clear cell carcinoma of the ovary? DNA
damage detected with γH2AX induced by anticancer agents. J Ovarian
Res. 5:162012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harisa GI, Ibrahim MF, Alanazi F and
Shazly GA: Engineering erythrocytes as a novel carrier for the
targeted delivery of the anticancer drug paclitaxel. Saudi Pharm J.
22:223–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu ZH, Lu MK, Hu LY and Li X: Praziquantel
synergistically enhances paclitaxel efficacy to inhibit cancer cell
growth. PLoS One. 7:e517212012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li CM, Lu Y, Chen J, Costello TA,
Narayanan R, Dalton MN, Snyder LM, Ahn S, Li W, Miller DD, et al:
Orally bioavailable tubulin antagonists for paclitaxel-refractory
cancer. Pharm Res. 29:3053–3063. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Oostendorp RL, Buckle T, Lambert G,
Garrigue JS, Beijnen JH, Schellens JH and van Tellingen O:
Paclitaxel in self-micro emulsifying formulations: Oral
bioavailability study in mice. Invest New Drugs. 29:768–776. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Borst P and Schinkel AH: P-glycoprotein
ABCB1: A major player in drug handling by mammals. J Clin Invest.
123:4131–4133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sui H, Fan ZZ and Li Q: Signal
transduction pathways and transcriptional mechanisms of
ABCB1/Pgp-mediated multiple drug resistance in human cancer cells.
J Int Med Res. 40:426–435. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim H, Park GS, Lee JE and Kim JH: A
leukotriene B4 receptor-2 is associated with paclitaxel resistance
in MCF-7/DOX breast cancer cells. Br J Cancer. 109:351–359. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ran X, Yang J, Liu C, Zhou P, Xiao L and
Zhang K: MiR-218 inhibits HMGB1-mediated autophagy in endometrial
carcinoma cells during chemotherapy. Int J Clin Exp Pathol.
8:6617–6626. 2015.PubMed/NCBI
|
|
42
|
Yang X, Iyer AK, Singh A, Choy E, Hornicek
FJ, Amiji MM and Duan Z: MDR1 siRNA loaded hyaluronic acid-based
CD44 targeted nanoparticle systems circumvent paclitaxel resistance
in ovarian cancer. Sci Rep. 5:85092015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang X, Iyer AK, Singh A, Milane L, Choy
E, Hornicek FJ, Amiji MM and Duan Z: Cluster of differentiation 44
targeted hyaluronic acid based nanoparticles for MDR1 siRNA
delivery to overcome drug resistance in ovarian cancer. Pharm Res.
32:2097–2109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mao K, Liu F, Liu X, Khuri FR, Marcus AI,
Li M and Zhou W: Re-expression of LKB1 in LKB1-mutant EKVX cells
leads to resistance to paclitaxel through the up-regulation of MDR1
expression. Lung Cancer. 88:131–138. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen SY, Hu SS, Dong Q, Cai JX, Zhang WP,
Sun JY, Wang TT, Xie J, He HR, Xing JF, et al: Establishment of
paclitaxel-resistant breast cancer cell line and nude mice models,
and underlying multidrug resistance mechanisms in vitro and in
vivo. Asian Pac J Cancer Prev. 14:6135–6140. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Januchowski R, Wojtowicz K,
Sujka-Kordowska P, Andrzejewska M and Zabel M: MDR gene expression
analysis of six drug-resistant ovarian cancer cell lines. BioMed
Res Int. 2013:2417632013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu G, Qin XQ, Guo JJ, Li TY and Chen JH:
AKT/ERK activation is associated with gastric cancer cell
resistance to paclitaxel. Int J Clin Exp Pathol. 7:1449–1458.
2014.PubMed/NCBI
|
|
48
|
Jeong JY, Kim KS, Moon JS, Song JA, Choi
SH, Kim KI, Kim TH and An HJ: Targeted inhibition of phosphatidyl
inositol-3-kinase p110β, but not p110α, enhances apoptosis and
sensitivity to paclitaxel in chemoresistant ovarian cancers.
Apoptosis. 18:509–520. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu Z, Zhu G, Getzenberg RH and Veltri RW:
The upregulation of PI3K/Akt and MAP kinase pathways is associated
with resistance of microtubule-targeting drugs in prostate cancer.
J Cell Biochem. 116:1341–1349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mei M, Xie D, Zhang Y, Jin J, You F, Li Y,
Dai J and Chen X: A new
2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene (SIA) derivative
overcomes paclitaxel resistance by inhibiting MAPK signaling and
increasing paclitaxel accumulation in breast cancer cells. PLoS
One. 9:e1043172014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhou M, Fan C and Tian N: Effects of
curcumin on the gene expression profile of L-02 cells. Biomed Rep.
3:519–526. 2015.PubMed/NCBI
|
|
52
|
Zhang Y, Liang D, Dong L, Ge X, Xu F, Chen
W, Dai Y, Li H, Zou P, Yang S, et al: Anti-inflammatory effects of
novel curcumin analogs in experimental acute lung injury. Respir
Res. 16:432015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fan Z, Yao J, Li Y, Hu X, Shao H and Tian
X: Anti-inflammatory and antioxidant effects of curcumin on acute
lung injury in a rodent model of intestinal ischemia reperfusion by
inhibiting the pathway of NF-κB. Int J Clin Exp Pathol.
8:3451–3459. 2015.PubMed/NCBI
|
|
54
|
Ferreira VH, Nazli A, Dizzell SE, Mueller
K and Kaushic C: The anti-inflammatory activity of curcumin
protects the genital mucosal epithelial barrier from disruption and
blocks replication of HIV-1 and HSV-2. PLoS One. 10:e01249032015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Robles-Escajeda E, Das U, Ortega NM, Parra
K, Francia G, Dimmock JR, Varela-Ramirez A and Aguilera RJ: A novel
curcumin-like dienone induces apoptosis in triple-negative breast
cancer cells. Cell Oncol (Dordr). 39:265–277. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Park W, Amin AR, Chen ZG and Shin DM: New
perspectives of curcumin in cancer prevention. Cancer Prev Res
(Phila). 6:387–400. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhou H, Beevers CS and Huang S: The
targets of curcumin. Curr Drug Targets. 12:332–347. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Philip M, Rowley DA and Schreiber H:
Inflammation as a tumor promoter in cancer induction. Semin Cancer
Biol. 14:433–439. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cao F, Liu T, Xu Y, Xu D and Feng S:
Curcumin inhibits cell proliferation and promotes apoptosis in
human osteoclastoma cell through MMP-9, NF-κB and JNK signaling
pathways. Int J Clin Exp Pathol. 8:6037–6045. 2015.PubMed/NCBI
|
|
60
|
Bansal SS, Goel M, Aqil F, Vadhanam MV and
Gupta RC: Advanced drug delivery systems of curcumin for cancer
chemoprevention. Cancer Prev Res (Phila). 4:1158–1171. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guan F, Ding Y, Zhang Y, Zhou Y, Li M and
Wang C: Curcumin suppresses proliferation and migration of
MDA-MB-231 breast cancer cells through autophagy-dependent Akt
degradation. PLoS One. 11:e01465532016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Collett GP and Campbell FC: Curcumin
induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human
colon cancer cells. Carcinogenesis. 25:2183–2189. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li X, Lu Y, Jin Y, Son JK, Lee SH and
Chang HW: Curcumin inhibits the activation of immunoglobulin
e-mediated mast cells and passive systemic anaphylaxis in mice by
reducing serum eicosanoid and histamine levels. Biomol Ther
(Seoul). 22:27–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu D and Chen Z: The effect of curcumin
on breast cancer cells. J Breast Cancer. 16:133–137. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Astuti PD, Utami E, Nugrahani AW and
Sudjadi S: Genistein abrogates G2 arrest induced by curcumin in p53
deficient T47D cells. Daru. 20:822012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cheng C, Jiao JT, Qian Y, Guo XY, Huang J,
Dai MC, Zhang L, Ding XP, Zong D and Shao JF: Curcumin induces G2/M
arrest and triggers apoptosis via FoxO1 signaling in U87 human
glioma cells. Mol Med Rep. 13:3763–3770. 2016.PubMed/NCBI
|
|
67
|
Eom DW, Lee JH, Kim YJ, Hwang GS, Kim SN,
Kwak JH, Cheon GJ, Kim KH, Jang HJ, Ham J, et al: Synergistic
effect of curcumin on epigallocatechin gallate-induced anticancer
action in PC3 prostate cancer cells. BMB Rep. 48:461–466. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xiao J, Chu Y, Hu K, Wan J, Huang Y, Jiang
C, Liang G and Li X: Synthesis and biological analysis of a new
curcumin analogue for enhanced anti-tumor activity in HepG 2 cells.
Oncol Rep. 23:1435–1441. 2010.PubMed/NCBI
|
|
69
|
Zhang Y, Jiang X, Peng K, Chen C, Fu L,
Wang Z, Feng J, Liu Z, Zhang H, Liang G, et al: Discovery and
evaluation of novel anti-inflammatory derivatives of natural
bioactive curcumin. Drug Des Devel Ther. 8:2161–2171.
2014.PubMed/NCBI
|
|
70
|
Zhang Y, Zhao C, He W, Wang Z, Fang Q,
Xiao B, Liu Z, Liang G and Yang S: Discovery and evaluation of
asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory
agents. Drug Des Devel Ther. 8:373–382. 2014.PubMed/NCBI
|
|
71
|
Olivera A, Moore TW, Hu F, Brown AP, Sun
A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, et al:
Inhibition of the NF-κB signaling pathway by the curcumin analog,
3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31):
Anti-inflammatory and anti-cancer properties. Int Immunopharmacol.
12:368–377. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Balanda M, Quiero A, Vergara N, Espinoza
G, Martín HS, Rojas G and Ramírez E: Prevalence of human
papillomavirus infection among women presenting for cervical cancer
screening in Chile, 2014–2015. Med Microbiol Immunol (Berl).
205:585–594. 2016. View Article : Google Scholar
|
|
74
|
Bava SV, Puliappadamba VT, Deepti A, Nair
A, Karunagaran D and Anto RJ: Sensitization of taxol-induced
apoptosis by curcumin involves down-regulation of nuclear
factor-kappaB and the serine/threonine kinase Akt and is
independent of tubulin polymerization. J Biol Chem. 280:6301–6308.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bava SV, Sreekanth CN, Thulasidasan AKT,
Anto NP, Cheriyan VT, Puliyappadamba VT, Menon SG, Ravichandran SD
and Anto RJ: Akt is upstream and MAPKs are downstream of NF-κB in
paclitaxel-induced survival signaling events, which are
down-regulated by curcumin contributing to their synergism. Int J
Biochem Cell Biol. 43:331–341. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sreekanth CN, Bava SV, Sreekumar E and
Anto RJ: Molecular evidences for the chemosensitizing efficacy of
liposomal curcumin in paclitaxel chemotherapy in mouse models of
cervical cancer. Oncogene. 30:3139–3152. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dang YP, Yuan XY, Tian R, Li DG and Liu W:
Curcumin improves the paclitaxel-induced apoptosis of HPV-positive
human cervical cancer cells via the NF-κB-p53-caspase-3 pathway.
Exp Ther Med. 9:1470–1476. 2015.PubMed/NCBI
|
|
78
|
Punfa W, Suzuki S, Pitchakarn P, Yodkeeree
S, Naiki T, Takahashi S and Limtrakul P: Curcumin-loaded PLGA
nanoparticles conjugated with anti-P-glycoprotein antibody to
overcome multidrug resistance. Asian Pac J Cancer Prev.
15:9249–9258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Faião-Flores F, Suarez JAQ, Pardi PC and
Maria DA: DM-1, sodium
4-(5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl)-2-methoxy-phenolate:
A curcumin analog with a synergic effect in combination with
paclitaxel in breast cancer treatment. Tumour Biol. 33:775–785.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Banerjee M, Singh P and Panda D: Curcumin
suppresses the dynamic instability of microtubules, activates the
mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J.
277:3437–3448. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhan Y, Chen Y, Liu R, Zhang H and Zhang
Y: Potentiation of paclitaxel activity by curcumin in human breast
cancer cell by modulating apoptosis and inhibiting EGFR signaling.
Arch Pharm Res. 37:1086–1095. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Boztas AO, Karakuzu O, Galante G, Ugur Z,
Kocabas F, Altuntas CZ and Yazaydin AO: Synergistic interaction of
paclitaxel and curcumin with cyclodextrin polymer complexation in
human cancer cells. Mol Pharm. 10:2676–2683. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Thadakapally R, Aafreen A, Aukunuru J,
Habibuddin M and Jogala S: Preparation and characterization of
PEG-albumin-curcumin nanoparticles intended to treat breast cancer.
Indian J Pharm Sci. 78:65–72. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Royt M, Mukherjee S, Sarkar R and Biswas
J: Curcumin sensitizes chemotherapeutic drugs via modulation of
PKC, telomerase, NF-kappaB and HDAC in breast cancer. Ther Deliv.
2:1275–1293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Aggarwal BB, Shishodia S, Takada Y,
Banerjee S, Newman RA, Bueso-Ramos CE and Price JE: Curcumin
suppresses the paclitaxel-induced nuclear factor-kappaB pathway in
breast cancer cells and inhibits lung metastasis of human breast
cancer in nude mice. Clin Cancer Res. 11:7490–7498. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kang HJ, Lee SH, Price JE and Kim LS:
Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in
breast cancer cells and potentiates the growth inhibitory effect of
paclitaxel in a breast cancer nude mice model. Breast J.
15:223–229. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang J, Wang F, Li F, Zhang W, Shen Y,
Zhou D and Guo S: A multifunctional poly(curcumin) nanomedicine for
dual-modal targeted delivery, intracellular responsive release,
dual-drug treatment and imaging of multidrug resistant cancer
cells. J Mater Chem B Mater Biol Med. 4:2954–2962. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ganta S, Devalapally H and Amiji M:
Curcumin enhances oral bioavailability and anti-tumor therapeutic
efficacy of paclitaxel upon administration in nanoemulsion
formulation. J Pharm Sci. 99:4630–4641. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Innamaa A, Jackson L, Asher V, van
Schalkwyk G, Warren A, Keightley A, Hay D, Bali A, Sowter H and
Khan R: Expression and effects of modulation of the K2P potassium
channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human
ovary and epithelial ovarian cancer. Clin Transl Oncol. 15:910–918.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Deng S, Xu J, Li R and Zhou Q: Inhibitory
effect of curcumin-loaded solid lipid nanoparticles combined with
paclitaxel on human ovarian cancer cell line HO-8910. China
Pharmacy. 24:1756–1759. 2013.http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYA201319013.htm
|
|
91
|
Abouzeid AH, Patel NR, Sarisozen C and
Torchilin VP: Transferrin-targeted polymeric micelles co-loaded
with curcumin and paclitaxel: Efficient killing of
paclitaxel-resistant cancer cells. Pharm Res. 31:1938–1945. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu Z, Zhu YY, Li ZY and Ning SQ:
Evaluation of the efficacy of paclitaxel with curcumin combination
in ovarian cancer cells. Oncol Lett. 12:3944–3948. 2016.PubMed/NCBI
|
|
93
|
Kar R, Sharma C, Sen S, Jain SK, Gupta SD
and Singh N: Response of primary culture of human ovarian cancer
cells to chemotherapy: In vitro individualized therapy. J Cancer
Res Ther. 12:1050–1055. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Galia A, Calogero AE, Condorelli R,
Fraggetta F, La Corte A, Ridolfo F, Bosco P, Castiglione R and
Salemi M: PARP-1 protein expression in glioblastoma multiforme. Eur
J Histochem. 56:e92012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hossain M, Banik NL and Ray SK:
Synergistic anti-cancer mechanisms of curcumin and paclitaxel for
growth inhibition of human brain tumor stem cells and LN18 and
U138MG cells. Neurochem Int. 61:1102–1113. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Manju S, Sharma CP and Sreenivasan K:
Targeted coadministration of sparingly soluble paclitaxel and
curcumin into cancer cells by surface engineered magnetic
nanoparticles. J Mater Chem. 21:15708–15717. 2011. View Article : Google Scholar
|
|
97
|
Cui Y, Zhang M, Zeng F, Jin H, Xu Q and
Huang Y: Dual-targeting magnetic PLGA Nanoparticles for codelivery
of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater
Interfaces. 8:32159–32169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kamat AM, Sethi G and Aggarwal BB:
Curcumin potentiates the apoptotic effects of chemotherapeutic
agents and cytokines through down-regulation of nuclear
factor-kappaB and nuclear factor-kappaB-regulated gene products in
IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer
cells. Mol Cancer Ther. 6:1022–1030. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhao H, Yu X, Qi R, Shang F and Su Z:
Inhibitory effects of curcumin in combination with paclitaxel on
prostate cancer xenografted model. Xiandai Shengwu Yixue Jinzhan.
10:823–827. 2010.(In Chinese).
|
|
100
|
Wand D, Qi R, Zhao H and Yu X: Effects of
curcumin combined with paclitaxel on the invasion and senescence of
human prostatic carcinoma PC3 cells. Xiandai Shengwu Yixue Jinzhan.
12:6239–6241. 2012.(In Chinese).
|
|
101
|
Huang YT, Huang DM, Chueh SC, Teng CM and
Guh JH: Alisol B acetate, a triterpene from Alismatis rhizoma,
induces Bax nuclear translocation and apoptosis in human
hormone-resistant prostate cancer PC-3 cells. Cancer Lett.
231:270–278. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Thomas SL, Zhong D, Zhou W, Malik S,
Liotta D, Snyder JP, Hamel E and Giannakakou P: EF24, a novel
curcumin analog, disrupts the microtubule cytoskeleton and inhibits
HIF-1. Cell Cycle. 7:2409–2417. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mathur A, Abd Elmageed ZY, Liu X,
Kostochka ML, Zhang H, Abdel-Mageed AB and Mondal D: Subverting
ER-stress towards apoptosis by nelfinavir and curcumin coexposure
augments docetaxel efficacy in castration resistant prostate cancer
cells. PLoS One. 9:e1031092014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yang JD and Roberts LR: Hepatocellular
carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 7:448–458.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wei KR, Yu X, Zheng RS, Peng XB, Zhang SW,
Ji MF, Liang ZH, Ou ZX and Chen WQ: Incidence and mortality of
liver cancer in China, 2010. Chin J Cancer. 33:388–394.
2014.PubMed/NCBI
|
|
106
|
Byam J, Renz J and Millis JM: Liver
transplantation for hepatocellular carcinoma. Hepatobiliary Surg
Nutr. 2:22–30. 2013.PubMed/NCBI
|
|
107
|
Zhou M, Li Z, Han Z and Tian N:
Paclitaxel-sensitization enhanced by curcumin involves
down-regulation of nuclear factor-κB and Lin28 in Hep3B cells. J
Recept Signal Transduct Res. 35:618–625. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
O'Day E, Le MTN, Imai S, Tan SM, Kirchner
R, Arthanari H, Hofmann O, Wagner G and Lieberman J: An RNA-binding
protein, Lin28, recognizes and remodels g-quartets in the microRNAs
(miRNAs) and mRNAs it regulates. J Biol Chem. 290:17909–17922.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dubey AK, Gupta U and Jain S: Epidemiology
of lung cancer and approaches for its prediction: A systematic
review and analysis. Chin J Cancer. 35:71–83. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Muthoosamy K, Abubakar IB, Bai RG, Loh HS
and Manickam S: Exceedingly higher co-loading of curcumin and
paclitaxel onto polymer-functionalized reduced graphene oxide for
highly potent synergistic anticancer treatment. Sci Rep.
6:328082016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Su GM, Davey MW and Davey RA: Induction of
broad drug resistance in small cell lung cancer cells and its
reversal by paclitaxel. Int J Cancer. 76:702–708. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dhillon N, Aggarwal BB, Newman RA, Wolff
RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V and Kurzrock
R: Phase II trial of curcumin in patients with advanced pancreatic
cancer. Clin Cancer Res. 14:4491–4499. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Epelbaum R, Schaffer M, Vizel B, Badmaev V
and Bar-Sela G: Curcumin and gemcitabine in patients with advanced
pancreatic cancer. Nutr Cancer. 62:1137–1141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Irving GR, Iwuji CO, Morgan B, Berry DP,
Steward WP, Thomas A, Brown K and Howells LM: Combining curcumin
(C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in
patients with inoperable colorectal cancer (CUFOX): Study protocol
for a randomised control trial. Trials. 16:1102015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Bayet-Robert M, Kwiatkowski F, Leheurteur
M, Gachon F, Planchat E, Abrial C, Mouret-Reynier MA, Durando X,
Barthomeuf C and Chollet P: Phase I dose escalation trial of
docetaxel plus curcumin in patients with advanced and metastatic
breast cancer. Cancer Biol Ther. 9:8–14. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mahammedi H, Planchat E, Pouget M, Durando
X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert
M, et al: The new combination docetaxel, prednisone and curcumin in
patients with castration-resistant prostate cancer: A pilot phase
II study. Oncology. 90:69–78. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kanai M, Otsuka Y, Otsuka K, Sato M,
Nishimura T, Mori Y, Kawaguchi M, Hatano E, Kodama Y, Matsumoto S,
et al: A phase I study investigating the safety and
pharmacokinetics of highly bioavailable curcumin (Theracurmin) in
cancer patients. Cancer Chemother Pharmacol. 71:1521–1530. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Storka A, Vcelar B, Klickovic U, Gouya G,
Weisshaar S, Aschauer S, Bolger G, Helson L and Wolzt M: Safety,
tolerability and pharmacokinetics of liposomal curcumin in healthy
humans. Int J Clin Pharmacol Ther. 53:54–65. 2015. View Article : Google Scholar : PubMed/NCBI
|