Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2017 Volume 38 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cancer drug delivery in the nano era: An overview and perspectives (Review)

  • Authors:
    • Zhen Li
    • Shirui Tan
    • Shuan Li
    • Qiang Shen
    • Kunhua Wang
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China, College of Agricultural Sciences, Yunnan University, Kunming, Yunnan, P.R. China, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 611-624
    |
    Published online on: June 14, 2017
       https://doi.org/10.3892/or.2017.5718
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Nanomaterials are increasingly used as drug carriers for cancer therapy. Nanomaterials also appeal to researchers in the areas of cancer diagnosis and biomarker discovery. Several antitumor nanodrugs are currently being tested in preclinical and clinical trials and show promise in therapeutic and other settings. We review the development of nanomaterial drug carriers, including liposomes, polymer nanoparticles, dendritic polymers, and nanomicelles, for the diagnosis and treatment of various cancers. The prospects of nanomaterials as drug carriers for future clinical applications are also discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Shanthi M: Global Status Report on Noncommunicable Diseases 2014. Geneva: WHO Press, World Health Organization; 2014

2 

LaVan DA, McGuire T and Langer R: Small-scale systems for in vivo drug delivery. Nat Biotechnol. 21:1184–1191. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Shi J, Xiao Z, Kamaly N and Farokhzad OC: Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res. 44:1123–1134. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Langer R: New methods of drug delivery. Science. 249:1527–1533. 1990. View Article : Google Scholar : PubMed/NCBI

5 

Bangham AD, Standish MM and Watkins JC: Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 13:238–252. 1965. View Article : Google Scholar : PubMed/NCBI

6 

James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ and Stewart JS: Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol). 6:294–296. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P and Hawkins MJ: Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 17:1263–1268. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF and Farokhzad OC: Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem Soc Rev. 41:2971–3010. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Burgess P, Hutt PB, Farokhzad OC, Langer R, Minick S and Zale S: On firm ground: IP protection of therapeutic nanoparticles. Nat Biotechnol. 28:1267–1270. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Farokhzad OC and Langer R: Impact of nanotechnology on drug delivery. ACS Nano. 3:16–20. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Gulati M, Grover M, Singh S and Singh M: Lipophilic drug derivatives in liposomes. Int J Pharm. 165:129–168. 1998. View Article : Google Scholar

12 

Scherphof G, Roerdink F, Waite M and Parks J: Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 542:296–307. 1978. View Article : Google Scholar : PubMed/NCBI

13 

Allen TM and Cleland LG: Serum-induced leakage of liposome contents. Biochim Biophys Acta. 597:418–426. 1980. View Article : Google Scholar : PubMed/NCBI

14 

Senior J and Gregoriadis G: Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett. 145:109–114. 1982. View Article : Google Scholar : PubMed/NCBI

15 

Huang S-L and MacDonald RC: Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta. 1665:134–141. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Ueno Y, Sonoda S, Suzuki R, Yokouchi M, Kawasoe Y, Tachibana K, Maruyama K, Sakamoto T and Komiya S: Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther. 12:270–277. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Pak CC, Erukulla RK, Ahl PL, Janoff AS and Meers P: Elastase activated liposomal delivery to nucleated cells. Biochim Biophys Acta. 1419:111–126. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Meers P: Enzyme-activated targeting of liposomes. Adv Drug Deliv Rev. 53:265–272. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Gerasimov OV, Boomer JA, Qualls MM and Thompson DH: Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev. 38:317–338. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Bondurant B, Mueller A and O'Brien DF: Photoinitiated destabilization of sterically stabilized liposomes. Biochim Biophys Acta. 1511:113–122. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Du B, Han S, Li H, Zhao F, Su X, Cao X and Zhang Z: Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 7:5411–5426. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Arie AA and Lee JK: Effect of boron doped fullerene C 60 film coating on the electrochemical characteristics of silicon thin film anodes for lithium secondary batteries. Synth Met. 161:158–165. 2011. View Article : Google Scholar

23 

Dao TT, Matsushima T and Murata H: Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer. Org Electron. 13:2709–2715. 2012. View Article : Google Scholar

24 

Papahadjopoulos D, Jacobson K, Nir S and Isac T: Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 311:330–348. 1973. View Article : Google Scholar : PubMed/NCBI

25 

Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G and Sood AK: Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65:6910–6918. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Miller CR, Bondurant B, McLean SD, McGovern KA and O'Brien DF: Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 37:12875–12883. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, et al: Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 25:1149–1157. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Wang Z, Yu Y, Dai W, Lu J, Cui J, Wu H, Yuan L, Zhang H, Wang X, Wang J, et al: The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials. 33:8451–8460. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Irvine DJ: Drug delivery: One nanoparticle, one kill. Nat Mater. 10:342–343. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Chen J, Jiang H, Wu Y, Li Y and Gao Y: A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des Devel Ther. 9:2265–2275. 2015.PubMed/NCBI

31 

Liu Z, Xiong M, Gong J, Zhang Y, Bai N, Luo Y, Li L, Wei Y, Liu Y, Tan X, et al: Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun. 5:4280–4291. 2014.PubMed/NCBI

32 

Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD and Ribas A: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464:1067–1070. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Lee JH and Lee MJ: Liposome mediated cancer gene therapy: Clinical trials and their lessons to stem cell therapy. Bull Korean Chem Soc. 33:433–442. 2012. View Article : Google Scholar

34 

Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM and Danielsen M: Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 84:7413–7417. 1987. View Article : Google Scholar : PubMed/NCBI

35 

Tari AM, Gutiérrez-Puente Y, Monaco G, Stephens C, Sun T, Rosenblum M, Belmont J, Arlinghaus R and Lopez-Berestein G: Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts. Int J Oncol. 31:1243–1250. 2007.PubMed/NCBI

36 

Yu L, Dean K and Li L: Polymer blends and composites from renewable resources. Prog Polym Sci. 31:576–602. 2006. View Article : Google Scholar

37 

Hu C-MJ, Fang RH, Copp J, Luk BT and Zhang L: A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 8:336–340. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Hu C-MJ and Zhang L, Aryal S, Cheung C, Fang RH and Zhang L: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 108:10980–10985. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Sinha M, Banik RM, Haldar C and Maiti P: Development of ciprofloxacin hydrochloride loaded poly (ethylene glycol)/chitosan scaffold as wound dressing. Nat Mater. 20:799–807. 2013.

40 

Nguyen TTT, Ghosh C, Hwang S-G, Dai Tran L and Park JS: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci Mater Med. 48:7125–7133. 2013. View Article : Google Scholar

41 

Tan S, Gan C, Li R, Ye Y, Zhang S, Wu X, Yang YY, Fan W and Wu M: A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int J Nanomedicine. 10:1045–1059. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Janib SM, Moses AS and MacKay JA: Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 62:1052–1063. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Grossman JH and McNeil SE: Nanotechnology in cancer medicine. Phys Today. 65:38–42. 2012. View Article : Google Scholar

44 

Mishra S, De A and Mozumdar S: Synthesis of thermoresponsive polymers for drug delivery. Drug Delivery System Clifton: Springer; pp. 77–101. 2014, View Article : Google Scholar

45 

Gundogdu N and Cetin M: Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: Preparation and in vitro evaluation. Pak J Pharm Sci. 27:1923–1929. 2014.PubMed/NCBI

46 

Tajmir-Riahi HA, Nafisi Sh, Sanyakamdhorn S, Agudelo D and Chanphai P: Applications of chitosan nanoparticles in drug delivery. Methods Mol Biol. 1141:165–184. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Malhotra M, Tomaro-Duchesneau C, Saha S and Prakash S: Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain. Methods Mol Biol. 1141:233–247. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Raja MAG, Katas H and Wen Jing T: Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One. 10:e01289632015. View Article : Google Scholar : PubMed/NCBI

49 

Malhotra M, Tomaro-Duchesneau C, Saha S and Prakash S: Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain. Drug Delivery System. Jain KK: New York, NY: Springer; pp. 233–247. 2014, View Article : Google Scholar

50 

Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S and Hou Z: Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles. Nanoscale Res Lett. 9:24082014. View Article : Google Scholar : PubMed/NCBI

51 

Sun C, Wang X, Zheng Z, Chen D, Wang X, Shi F, Yu D and Wu H: A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration. Int J Nanomedicine. 10:3567–3579. 2015.PubMed/NCBI

52 

Rabanel J-M, Faivre J, Tehrani SF, Lalloz A, Hildgen P and Banquy X: Effect of the polymer architecture on the structural and biophysical properties of PEG-PLA nanoparticles. ACS Appl Mater Interfaces. 7:10374–10385. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Diou O, Greco S, Beltran T, Lairez D, Authelin J-R and Bazile D: A method to quantify the affinity of cabazitaxel for PLA-PEG nanoparticles and investigate the influence of the nano-assembly structure on the drug/particle association. Pharm Res. 32:3188–3200. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Asadi H, Rostamizadeh K, Salari D and Hamidi M: Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul. 28:406–416. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Xie Y, Yi Y, Hu X, Shangguan M, Wang L, Lu Y, Qi J and Wu W: Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method. Pharm Dev Technol. 21:672–679. 2016.PubMed/NCBI

56 

Xiong W, Peng L, Chen H and Li Q: Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomed. 10:2985–2996. 2015.

57 

Zhang R, Luo K, Yang J, Sima M, Sun Y, Janát-Amsbury MM and Kopeček J: Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J Control Release. 166:66–74. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Wang Q, Tang H and Wu P: Aqueous solutions of poly (ethylene oxide)-poly (N-isopropylacrylamide): Thermosensitive behavior and distinct multiple assembly processes. Langmuir. 31:6497–6506. 2015. View Article : Google Scholar : PubMed/NCBI

59 

James Priya H, John R, Alex A and Anoop KR: Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B. 4:120–127. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Trotta F, Dianzani C, Caldera F, Mognetti B and Cavalli R: The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv. 11:931–941. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, et al: Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 526:118–121. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Hu CM, Fang RH, Luk BT and Zhang L: Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol. 8:933–938. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Miele E, Spinelli GP, Miele E, Tomao F and Tomao S: Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed. 4:99–105. 2009.

64 

Hawkins MJ, Soon-Shiong P and Desai N: Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 60:876–885. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Zheng Y-R, Suntharalingam K, Johnstone TC, Yoo H, Lin W, Brooks JG and Lippard SJ: Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc. 136:8790–8798. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Cirstea D, Hideshima T, Rodig S, Santo L, Pozzi S, Vallet S, Ikeda H, Perrone G, Gorgun G, Patel K, et al: Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 9:963–975. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Fu Q, Sun J, Zhang W, Sui X, Yan Z and He Z: Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Patents Anticancer Drug Discov. 4:262–272. 2009. View Article : Google Scholar

68 

Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, Burris HA III, Hart LL, Low SC, Parsons DM, et al: Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 22:3157–3163. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME and Yen Y: Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA. 111:11449–11454. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Buhleier E, Wehner W and Vögtle F: ‘Cascade’- and ‘nonskid-chain-like’ syntheses of molecular cavity topologies. Synthesis (Mass). 155–158:19781978.

71 

Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J and Smith P: A new class of polymers: Starburst-dendritic macromolecules. Polym J. 17:117–132. 1985. View Article : Google Scholar

72 

Gillies ER and Fréchet JM: Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 10:35–43. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Kesharwani P, Jain K and Jain NK: Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 39:268–307. 2014. View Article : Google Scholar

74 

Khopade AJ, Caruso F, Tripathi P, Nagaich S and Jain NK: Effect of dendrimer on entrapment and release of bioactive from liposomes. Int J Pharm. 232:157–162. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Papagiannaros A, Dimas K, Papaioannou GT and Demetzos C: Doxorubicin-PAMAM dendrimer complex attached to liposomes: Cytotoxic studies against human cancer cell lines. Int J Pharm. 302:29–38. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Purohit G, Sakthivel T and Florence AT: Interaction of cationic partial dendrimers with charged and neutral liposomes. Int J Pharm. 214:71–76. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Karadag M, Geyik C, Demirkol DO, Ertas FN and Timur S: Modified gold surfaces by 6-ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Mater Sci Eng C. 33:634–640. 2013. View Article : Google Scholar

78 

Tao X, Yang Y-J, Liu S, Zheng Y-Z, Fu J and Chen J-F: Poly (amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomater. 9:6431–6438. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Yoshioka H, Suzuki M, Mugisawa M, Naitoh N and Sawada H: Synthesis and applications of novel fluorinated dendrimer-type copolymers by the use of fluoroalkanoyl peroxide as a key intermediate. J Colloid Interface Sci. 308:4–10. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Zeng Y-L, Huang Y-F, Jiang J-H, Zhang X-B, Tang C-R, Shen G-L and Yu R-Q: Functionalization of multi-walled carbon nanotubes with poly (amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem Commun. 9:185–190. 2007. View Article : Google Scholar

81 

Tang L, Zhu Y, Yang X and Li C: An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Anal Chim Acta. 597:145–150. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Prajapati RN, Tekade RK, Gupta U, Gajbhiye V and Jain NK: Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol Pharm. 6:940–950. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK and Diwan PV: Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin. J Control Release. 90:335–343. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J and Baker JR Jr: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 19:1310–1316. 2002. View Article : Google Scholar : PubMed/NCBI

85 

Liu H, Wang Y, Wang M, Xiao J and Cheng Y: Fluorinated poly (propylenimine) dendrimers as gene vectors. Biomaterials. 35:5407–5413. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Qiao Z and Shi X: Dendrimer-based molecular imaging contrast agents. Prog Polym Sci. 44:1–27. 2015. View Article : Google Scholar

87 

Malik N, Evagorou EG and Duncan R: Dendrimer-platinate: A novel approach to cancer chemotherapy. Anticancer Drugs. 10:767–776. 1999. View Article : Google Scholar : PubMed/NCBI

88 

Kaminskas LM, Kelly BD, McLeod VM, Boyd BJ, Krippner GY, Williams ED and Porter CJ: Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm. 6:1190–1204. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Al-Jamal KT, Al-Jamal WT, Wang JT-W, Rubio N, Buddle J, Gathercole D, Zloh M and Kostarelos K: Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano. 7:1905–1917. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Huang Z, Sengar RS, Nigam A, Abadjian MC, Potter DM, Grotjahn DB and Wiener EC: A fluorinated dendrimer-based nanotechnology platform: New contrast agents for high field imaging. Invest Radiol. 45:641–654. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Yang J, Luo Y, Xu Y, Li J, Zhang Z, Wang H, Shen M, Shi X and Zhang G: Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl Mater Interfaces. 7:5420–5428. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Shi X, Wang SH, Van Antwerp ME, Chen X and Baker JR Jr: Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst (Lond). 134:1373–1379. 2009. View Article : Google Scholar

93 

Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB and Baker JR Jr: Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules. 9:603–609. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Hill E, Shukla R, Park SS and Baker JR Jr: Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem. 18:1756–1762. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Lesniak WG, Kariapper MS, Nair BM, Tan W, Hutson A, Balogh LP and Khan MK: Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting alphavbeta3 integrins. Bioconjug Chem. 18:1148–1154. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB and Baker JR Jr: In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules. 5:2269–2274. 2004. View Article : Google Scholar : PubMed/NCBI

97 

Chen H-T, Neerman MF, Parrish AR and Simanek EE: Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 126:10044–10048. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH and Cho EK: A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 74:277–282. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Park S and Healy KE: Nanoparticulate DNA packaging using terpolymers of poly (lysine-g-(lactide-b-ethylene glycol)). Bioconjug Chem. 14:311–319. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Sun T-M, Du J-Z, Yan L-F, Mao H-Q and Wang J: Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 29:4348–4355. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Gao Y, Zhou Y, Zhao L, Zhang C, Li Y, Li J, Li X and Liu Y: Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 23:127–135. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y and Okano T: Preparation and characterization of thermally responsive block copolymer micelles comprising poly (N-isopropylacrylamide-b-DL-lactide). J Control Release. 55:87–98. 1998. View Article : Google Scholar : PubMed/NCBI

103 

He C, Zhao C, Chen X, Guo Z, Zhuang X and Jing X: Novel pH- and temperature-responsive bock copolymers with tunable pH-responsive range. Macromol Rapid Commun. 29:490–497. 2008. View Article : Google Scholar

104 

Xu F, Yan T-T and Luo Y-L: Studies on micellization behavior of thermosensitive PNIPAAm-b-PLA amphiphilic block copolymers. J Nanosci Nanotechnol. 12:2287–2291. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Zhao C, Zhuang X, He C, Chen X and Jing X: Synthesis of novel thermo-and pH-responsive poly (L-lysine)-based copolymer and its micellization in water. Macromol Rapid Commun. 29:1810–1816. 2008. View Article : Google Scholar

106 

Saravanakumar G, Lee J, Kim J and Kim WJ: Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem Commun (Camb). 51:9995–9998. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Bae J, Maurya A, Shariat-Madar Z, Murthy SN and Jo S: Novel redox-responsive amphiphilic copolymer micelles for drug delivery: Synthesis and characterization. AAPS J. 17:1357–1368. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Liu Y, Li C, Wang HY, Zhang XZ and Zhuo RX: Synthesis of thermo- and pH-sensitive polyion complex micelles for fluorescent imaging. Chemistry. 18:2297–2304. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Johnson RP, Jeong YI, John JV, Chung CW, Kang DH, Selvaraj M, Suh H and Kim I: Dual stimuli-responsive poly (N-isopropylacrylamide)-b-poly (L-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules. 14:1434–1443. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Zhou F, Zheng B, Zhang Y, Wu Y, Wang H and Chang J: Construction of near-infrared light-triggered reactive oxygen species-sensitive (UCN/SiO2-RB + DOX)@PPADT nanoparticles for simultaneous chemotherapy and photodynamic therapy. Nanotechnology. 27:2356012016. View Article : Google Scholar : PubMed/NCBI

111 

Wu HQ and Wang CC: Biodegradable smart nanogels: A new platform for targeting drug delivery and biomedical diagnostics. Langmuir. 32:6211–6225. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Moan J and Peng Q: An outline of the hundred-year history of PDT. Anticancer Res. 23A:3591–3600. 2003.

113 

Castano AP, Mroz P and Hamblin MR: Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 6:535–545. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Krammer B: Vascular effects of photodynamic therapy. Anticancer Res. 21B:4271–4277. 2001.

115 

Monge-Fuentes V, Muehlmann LA and de Azevedo RB: Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev. 5:24381–24395. 2014. View Article : Google Scholar

116 

Wang C, Cheng L and Liu Z: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 3:317–330. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Marin E, Briceño MI and Caballero-George C: Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed. 8:3071–3090. 2013.

118 

Ma X, Wang X, Zhou M and Fei H: A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv Healthc Mater. 2:1638–1643. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Jung HS, Han J, Lee J-H, Lee JH, Choi JM, Kweon HS, Han JH, Kim JH, Byun KM, Jung JH, et al: Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J Am Chem Soc. 137:3017–3023. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Biswas S, Kumari P, Lakhani PM and Ghosh B: Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 83:184–202. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Dewit MA and Gillies ER: A cascade biodegradable polymer based on alternating cyclization and elimination reactions. J Am Chem Soc. 131:18327–18334. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Deming TJ: Synthetic polypeptides for biomedical applications. Prog Polym Sci. 32:858–875. 2007. View Article : Google Scholar

123 

Sun J, Chen X, Lu T, Liu S, Tian H, Guo Z and Jing X: Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly (L-cysteine)-block-poly (L-lactide). Langmuir. 24:10099–10106. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Dourado ER, Pizzorno BS, Motta LM, Simao RA and Leite LF: Analysis of asphaltic binders modified with PPA by surface techniques. J Microsc. 254:122–128. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Kim IB, Han MH, Phillips RL, Samanta B, Rotello VM, Zhang ZJ and Bunz UH: Nano-conjugate fluorescence probe for the discrimination of phosphate and pyrophosphate. Chemistry. 15:449–456. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Chen PC, Mwakwari SC and Oyelere AK: Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol Sci Appl. 1:45–65. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Huang H-C, Barua S, Sharma G, Dey SK and Rege K: Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 155:344–357. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y and Nakagawa M: Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res. 44:1080–1093. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, Seidel GD, Yuldasheva N and Tamarkin L: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 16:6139–6149. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, et al: Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 121:2768–2780. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Sanchez C, Belleville P, Popall M and Nicole L: Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem Soc Rev. 40:696–753. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Jain RK and Stylianopoulos T: Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 7:653–664. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Kamaly N, Yameen B, Wu J and Farokhzad OC: Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 116:2602–2663. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Holback H and Yeo Y: Intratumoral drug delivery with nanoparticulate carriers. Pharm Res. 28:1819–1830. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Jain RK, Martin JD and Stylianopoulos T: The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 16:321–346. 2014. View Article : Google Scholar : PubMed/NCBI

136 

Kim KY: Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine (Lond). 3:103–110. 2007. View Article : Google Scholar

137 

Liu D, He C, Wang AZ and Lin W: Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomed. 8:3309–3319. 2013.

138 

Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G and Szewczyk A: A two-stage poly (ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther. 11:990–995. 2005. View Article : Google Scholar : PubMed/NCBI

139 

Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q and Chen C: Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 9:325–341. 2009. View Article : Google Scholar : PubMed/NCBI

140 

Kim J, Dadsetan M, Ameenuddin S, Windebank AJ, Yaszemski MJ and Lu L: In vivo biodegradation and biocompatibility of PEG/sebacic acid-based hydrogels using a cage implant system. J Biomed Mater Res A. 95:191–197. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Nicolete R, dos Santos DF and Faccioli LH: The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 11:1557–1563. 2011. View Article : Google Scholar : PubMed/NCBI

142 

Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA and Stahl GL: Polyglycolic acid-induced inflammation: Role of hydrolysis and resulting complement activation. Tissue Eng. 12:301–308. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Madaan K, Kumar S, Poonia N, Lather V and Pandita D: Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 6:139–150. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Jain K, Kesharwani P, Gupta U and Jain NK: Dendrimer toxicity: Let's meet the challenge. Int J Pharm. 394:122–142. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Ma Y, Mou Q, Wang D, Zhu X and Yan D: Dendritic polymers for theranostics. Theranostics. 6:930–947. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Dreaden EC, Austin LA, Mackey MA and El-Sayed MA: Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 3:457–478. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Gu Y, Zhong Y, Meng F, Cheng R, Deng C and Zhong Z: Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules. 14:2772–2780. 2013. View Article : Google Scholar : PubMed/NCBI

148 

Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R and Zhang Y: In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 18:1580–1585. 2012. View Article : Google Scholar : PubMed/NCBI

149 

Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X, et al: In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed Engl. 51:3125–3129. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Chen H, Yang Z, Ding C, Chu L, Zhang Y, Terry K, Liu H, Shen Q and Zhou J: Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem. 62:498–507. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Langer R and Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature. 263:797–800. 1976. View Article : Google Scholar : PubMed/NCBI

152 

Lee CC, MacKay JA, Fréchet JMJ and Szoka FC: Designing dendrimers for biological applications. Nat Biotechnol. 23:1517–1526. 2005. View Article : Google Scholar : PubMed/NCBI

153 

Torchilin VP: Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents. Immunomethods. 4:244–258. 1994. View Article : Google Scholar : PubMed/NCBI

154 

Immordino ML, Dosio F and Cattel L: Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 1:297–315. 2006.

155 

Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, et al: Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 19:1444–1454. 2001. View Article : Google Scholar : PubMed/NCBI

156 

Silverman JA and Deitcher SR: Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 71:555–564. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Verma J, Lal S and Van Noorden CJ: Inorganic nanoparticles for the theranostics of cancer. Eur J Nanomed. 7:271–287. 2015. View Article : Google Scholar

158 

Kim MT, Chen Y, Marhoul J and Jacobson F: Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 25:1223–1232. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R and Rochlitz C: Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol. 13:1234–1241. 2012. View Article : Google Scholar : PubMed/NCBI

160 

Swiss Group for Clinical Cancer Research: Anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative EGFR positive breast cancer. NCT02833766. https://clinicaltrials.gov/ct2/show/NCT02833766Accessed. October 20–2016.

161 

Markman M: Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother. 7:1469–1474. 2006. View Article : Google Scholar : PubMed/NCBI

162 

Listed N: Kaposi's sarcoma: DaunoXome approved. AIDS Treat News. 79:3–4. 1996.

163 

Rau K-M, Lin Y-C, Chen Y-Y, Chen JS, Lee KD, Wang CH and Chang HK: Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: An open-label, multi-center, non-comparative phase II study. BMC Cancer. 15:4232015. View Article : Google Scholar : PubMed/NCBI

164 

DiGiulio S: DiGiulio, S. FDA approves onivyde combo regimen for advanced pancreatic cancer. Oncol Times. 37:82015. View Article : Google Scholar

165 

Stathopoulos G and Boulikas T: Lipoplatin formulation review article. J Drug Deliv. 2012:5813632012. View Article : Google Scholar : PubMed/NCBI

166 

Ohyanagi F, Horai T, Sekine I, Yamamoto N, Nakagawa K, Nishio M, Senger S, Morsli N and Tamura T: Safety of BLP25 liposome vaccine (L-BLP25) in Japanese patients with unresectable stage III NSCLC after primary chemoradiotherapy: Preliminary results from a Phase I/II study. Jpn J Clin Oncol. 41:718–722. 2011. View Article : Google Scholar : PubMed/NCBI

167 

Dou Y, Hynynen K and Allen C: To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release. 249:63–73. 2017. View Article : Google Scholar : PubMed/NCBI

168 

Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, et al: Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AM. J Clin Oncol. 34:70002016.

169 

Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D and Hoos A: A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol. 58:759–764. 2006. View Article : Google Scholar : PubMed/NCBI

170 

Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, Rojanarata T, Sila-on W, Ruktanonchai U and Opanasopit P: Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech. 13:150–158. 2012. View Article : Google Scholar : PubMed/NCBI

171 

Strumberg D, Schultheis B, Traugott U, Vank C, Santel A, Keil O, Giese K, Kaufmann J and Drevs J: Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther. 50:76–78. 2012. View Article : Google Scholar : PubMed/NCBI

172 

Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C and Piccart M: CT4002 study group: A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol. 25:824–831. 2014. View Article : Google Scholar : PubMed/NCBI

173 

Slingerland M, Guchelaar H-J, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH and Gelderblom H: Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clin Ther. 35:1946–1954. 2013. View Article : Google Scholar : PubMed/NCBI

174 

Bala V, Rao S, Boyd BJ and Prestidge CA: Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 172:48–61. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Senzer NN, Matsuno K, Yamagata N, Fujisawa T, Wasserman E, Sutherland W, Sharma S and Phan A: Abstract C36: MBP-426, a novel liposome-encapsulated oxaliplatin, in combination with 5-FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro-esophageal adenocarcinoma, with pharmacokinetics. Mol Cancer Ther. 8:(Suppl. 1). C36. 2009.doi: 10.1158/1535-7163.TARG-09-C36. View Article : Google Scholar

176 

Seiden MV, Muggia F, Astrow A, Matulonis U, Campos S, Roche M, Sivret J, Rusk J and Barrett E: A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol. 93:229–232. 2004. View Article : Google Scholar : PubMed/NCBI

177 

Noble GT, Stefanick JF, Ashley JD, Kiziltepe T and Bilgicer B: Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 32:32–45. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Wetzler M, Thomas DA, Wang ES, Shepard R, Ford LA, Heffner TL, Parekh S, Andreeff M, O'Brien S and Kantarjian HM: Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 13:430–434. 2013. View Article : Google Scholar : PubMed/NCBI

179 

Hwang JH, Lim MC, Seo S-S, Park S-Y and Kang S: Phase II study of belotecan (CKD 602) as a single agent in patients with recurrent or progressive carcinoma of uterine cervix. Jpn J Clin Oncol. 41:624–629. 2011. View Article : Google Scholar : PubMed/NCBI

180 

Hough B, Posner M, Chung C, et al: A phase II study of single agent OSI-7904L in patients with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN). Journal. 27:e170052009.

181 

Pattni BS, Chupin VV and Torchilin VP: New developments in liposomal drug delivery. Chem Rev. 115:10938–10966. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Semple SC, Leone R, Wang J, Leng EC, Klimuk SK, Eisenhardt ML, Yuan ZN, Edwards K, Maurer N, Hope MJ, et al: Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci. 94:1024–1038. 2005. View Article : Google Scholar : PubMed/NCBI

183 

Ugwu S, Zhang A, Parmar M, Miller B, Sardone T, Peikov V and Ahmad I: Preparation, characterization, and stability of liposome-based formulations of mitoxantrone. Drug Dev Ind Pharm. 31:223–229. 2005. View Article : Google Scholar : PubMed/NCBI

184 

McMurtry V, Nieves-Alicea R, Donato N and Tari A: Liposome-incorporated Grb2 antisense oligonucleotides as a novel therapy against drug resistant chronic myelogenous leukemia. Cancer Res. 68:1503. 2008.

185 

Stathopoulos GP, Boulikas T, Kourvetaris A and Stathopoulos J: Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res. 262B:1489–1493. 2006.

186 

Oncology Venture: Oncology Venture presents LiPlaCis on AACR in New Orleans. https://www.aktietorget.se/NewsItem.aspx?ID=77244

187 

Barraud L, Merle P, Soma E, Lefrançois L, Guerret S, Chevallier M, Dubernet C, Couvreur P, Trépo C and Vitvitski L: Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 42:736–743. 2005. View Article : Google Scholar : PubMed/NCBI

188 

Zhou Q, Sun X, Zeng L, Liu J and Zhang Z: A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine (Lond). 5:419–423. 2009. View Article : Google Scholar

189 

Pang X, Du H-L, Zhang H-Q, Zhai Y-J and Zhai G-X: Polymer-drug conjugates: Present state of play and future perspectives. Drug Discov Today. 18:1316–1322. 2013. View Article : Google Scholar : PubMed/NCBI

190 

QUILT-3.014: A Trial of ABI-011 administered weekly in patients with advanced solid tumors or lymphomas. NCT02582827. https://clinicaltrials.gov/ct2/show/NCT02582827Accessed. March 6–2017.

191 

Giglio V, Sgarlata C and Vecchio G: Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: A spectroscopic and nanocalorimetric investigation. RSC Advances. 5:16664–16671. 2015. View Article : Google Scholar

192 

Svenson S: Clinical translation of nanomedicines. Curr Opin Solid State Mater Sci. 16:287–294. 2012. View Article : Google Scholar

193 

Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin DS, Schulz TK, Reed GA, Roby KF, Mackay CB, Smith HJ, et al: A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 75:1075–1087. 2015. View Article : Google Scholar : PubMed/NCBI

194 

Vergote I, Brize A, Lisyanskaya AS and Lichinitser M: Randomized phase III study comparing paclical-carboplatin with paclitaxel-carboplatin in patients with recurrent platinum-sensitive epithelial ovarian cancer. J Clin Oncol. 33:55172015.

195 

Pitto-Barry A and Barry NP: Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym Chem. 5:3291–3297. 2014. View Article : Google Scholar

196 

Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, et al: Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs. 30:1621–1627. 2012. View Article : Google Scholar : PubMed/NCBI

197 

Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y and Yoshizaki T: Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci. 104:369–374. 2013. View Article : Google Scholar : PubMed/NCBI

198 

Tsuji A, Hamaguchi T, Yamaguchi K, et al: A phase II study of NK012, a polymeric micelle formulation of SN-38, in colorectal cancer patients who had received prior oxaliplatin-based regimen. Journal. 33:35272015.

199 

Ghamande S, Lin C-C, Cho DC, Coleman T, Chaudhary I, Shapiro GI, Silverman M, Kuo M-W, Mach WB, Tseng Y, et al: Abstract A89: A phase I study of the novel DNA topoisomerase-1 inhibitor, TLC388 (Lipotecan®), administered intravenously to patients with advanced solid tumors. Mol Cancer Ther. 10:(Supplement 1). 892011. View Article : Google Scholar

200 

Ueno T, Endo K, Hori K, Ozaki N, Tsuji A, Kondo S, Wakisaka N, Murono S, Kataoka K, Kato Y, et al: Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int J Nanomed. 9:3005–3012. 2014. View Article : Google Scholar

201 

Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J, Takigahira M, Harada M, Saito H, Hayashi T, Kato Y, et al: NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 104:920–925. 2013. View Article : Google Scholar : PubMed/NCBI

202 

Owen SC, Chan DP and Shoichet MS: Polymeric micelle stability. Nano Today. 7:53–65. 2012. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z, Tan S, Li S, Shen Q and Wang K: Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 38: 611-624, 2017.
APA
Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncology Reports, 38, 611-624. https://doi.org/10.3892/or.2017.5718
MLA
Li, Z., Tan, S., Li, S., Shen, Q., Wang, K."Cancer drug delivery in the nano era: An overview and perspectives (Review)". Oncology Reports 38.2 (2017): 611-624.
Chicago
Li, Z., Tan, S., Li, S., Shen, Q., Wang, K."Cancer drug delivery in the nano era: An overview and perspectives (Review)". Oncology Reports 38, no. 2 (2017): 611-624. https://doi.org/10.3892/or.2017.5718
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z, Tan S, Li S, Shen Q and Wang K: Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 38: 611-624, 2017.
APA
Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncology Reports, 38, 611-624. https://doi.org/10.3892/or.2017.5718
MLA
Li, Z., Tan, S., Li, S., Shen, Q., Wang, K."Cancer drug delivery in the nano era: An overview and perspectives (Review)". Oncology Reports 38.2 (2017): 611-624.
Chicago
Li, Z., Tan, S., Li, S., Shen, Q., Wang, K."Cancer drug delivery in the nano era: An overview and perspectives (Review)". Oncology Reports 38, no. 2 (2017): 611-624. https://doi.org/10.3892/or.2017.5718
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team