|
1
|
Carroll VA and Ashcroft M: Targeting the
molecular basis for tumour hypoxia. Expert Rev Mol Med. 7:1–16.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dewhirst MW, Cao Y and Moeller B: Cycling
hypoxia and free radicals regulate angiogenesis and radiotherapy
response. Nat Rev Cancer. 8:425–437. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vaupel P and Mayer A: Hypoxia in cancer:
Significance and impact on clinical outcome. Cancer Metastasis Rev.
26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bertout JA, Patel SA and Simon MC: The
impact of O2 availability on human cancer. Nat Rev
Cancer. 8:967–975. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Young SD, Marshall RS and Hill RP: Hypoxia
induces DNA overreplication and enhances metastatic potential of
murine tumor cells. Proc Natl Acad Sci USA. 85:9533–9537. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruan K, Song G and Ouyang G: Role of
hypoxia in the hallmarks of human cancer. J Cell Biochem.
107:1053–1062. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vaupel P, Kelleher DK and Höckel M: Oxygen
status of malignant tumors: Pathogenesis of hypoxia and
significance for tumor therapy. Semin Oncol. 28:(Suppl 8). 29–35.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gray LH, Conger AD, Ebert M, Hornsey S and
Scott OC: The concentration of oxygen dissolved in tissues at the
time of irradiation as a factor in radiotherapy. Br J Radiol.
26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Moulder JE and Rockwell S: Tumor hypoxia:
Its impact on cancer therapy. Cancer Metastasis Rev. 5:313–341.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chaudary N and Hill RP: Hypoxia and
metastasis. Clin Cancer Res. 13:1947–1949. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Moyer MW: Targeting hypoxia brings breath
of fresh air to cancer therapy. Nat Med. 18:636–637. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wasinger VC, Cordwell SJ, Cerpa-Poljak A,
Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL and
Humphery-Smith I: Progress with gene-product mapping of the
Mollicutes: Mycoplasma genitalium. Electrophoresis. 16:1090–1094.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen B, Zhang D, Wang X, Ma W, Deng S,
Zhang P, Zhu H, Xu N and Liang S: Proteomics progresses in
microbial physiology and clinical antimicrobial therapy. Eur J Clin
Microbiol Infect Dis. 36:403–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ion A, Popa IM, Papagheorghe LM, Lisievici
C, Lupu M, Voiculescu V, Caruntu C and Boda D: Proteomic approaches
to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers.
2016:96024722016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Tian W and Song J: Proteomics
applications in dental derived stem cells. J Cell Physiol.
232:1602–1610. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Aebersold R and Mann M: Mass
spectrometry-based proteomics. Nature. 422:198–207. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cravatt BF, Simon GM and Yates JR III: The
biological impact of mass-spectrometry-based proteomics. Nature.
450:991–1000. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nesvizhskii AI, Vitek O and Aebersold R:
Analysis and validation of proteomic data generated by tandem mass
spectrometry. Nat Methods. 4:787–797. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shapiro AL, Viñuela E and Maizel JV Jr:
Molecular weight estimation of polypeptide chains by
electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res
Commun. 28:815–820. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shapiro HD, Miller KD and Harris AH:
Low-pH disc electrophoresis of spinal fluid; changes in multiple
sclerosis. Exp Mol Pathol. 7:362–365. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Weber K and Osborn M: The reliability of
molecular weight determinations by dodecyl sulfate-polyacrylamide
gel electrophoresis. J Biol Chem. 244:4406–4412. 1969.PubMed/NCBI
|
|
22
|
O'Farrell PH: High resolution
two-dimensional electrophoresis of proteins. J Biol Chem.
250:4007–4021. 1975.PubMed/NCBI
|
|
23
|
Unlü M, Morgan ME and Minden JS:
Difference gel electrophoresis: A single gel method for detecting
changes in protein extracts. Electrophoresis. 18:2071–2077. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Alban A, David SO, Bjorkesten L, Andersson
C, Sloge E, Lewis S and Currie I: A novel experimental design for
comparative two-dimensional gel analysis: Two-dimensional
difference gel electrophoresis incorporating a pooled internal
standard. Proteomics. 3:36–44. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Strittmatter EF, Ferguson PL, Tang K and
Smith RD: Proteome analyses using accurate mass and elution time
peptide tags with capillary LC time-of-flight mass spectrometry. J
Am Soc Mass Spectrom. 14:980–991. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lundgren DH, Hwang SI, Wu L and Han DK:
Role of spectral counting in quantitative proteomics. Expert Rev
Proteomics. 7:39–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ong SE, Blagoev B, Kratchmarova I,
Kristensen DB, Steen H, Pandey A and Mann M: Stable isotope
labeling by amino acids in cell culture, SILAC, as a simple and
accurate approach to expression proteomics. Mol Cell Proteomics.
1:376–386. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schmidt A, Kellermann J and Lottspeich F:
A novel strategy for quantitative proteomics using isotope-coded
protein labels. Proteomics. 5:4–15. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wiese S, Reidegeld KA, Meyer HE and
Warscheid B: Protein labeling by iTRAQ: A new tool for quantitative
mass spectrometry in proteome research. Proteomics. 7:340–350.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Thompson A, Schäfer J, Kuhn K, Kienle S,
Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK and Hamon
C: Tandem mass tags: A novel quantification strategy for
comparative analysis of complex protein mixtures by MS/MS. Anal
Chem. 75:1895–1904. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen Y, Shi G, Xia W, Kong C, Zhao S, Gaw
AF, Chen EY, Yang GP, Giaccia AJ, Le QT, et al: Identification of
hypoxia-regulated proteins in head and neck cancer by proteomic and
tissue array profiling. Cancer Res. 64:7302–7310. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Q, Van Antwerp D, Mercurio F, Lee KF
and Verma IM: Severe liver degeneration in mice lacking the IkappaB
kinase 2 gene. Science. 284:321–325. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Magagnin MG, Sergeant K, van den Beucken
T, Rouschop KM, Jutten B, Seigneuric R, Lambin P, Devreese B,
Koritzinsky M and Wouters BG: Proteomic analysis of gene expression
following hypoxia and reoxygenation reveals proteins involved in
the recovery from endoplasmic reticulum and oxidative stress.
Radiother Oncol. 83:340–345. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Woodman PG: p97, a protein coping with
multiple identities. J Cell Sci. 116:4283–4290. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Koritzinsky M, Magagnin MG, van den
Beucken T, Seigneuric R, Savelkouls K, Dostie J, Pyronnet S,
Kaufman RJ, Weppler SA, Voncken JW, et al: Gene expression during
acute and prolonged hypoxia is regulated by distinct mechanisms of
translational control. EMBO J. 25:1114–1125. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Koritzinsky M, Seigneuric R, Magagnin MG,
van den Beucken T, Lambin P and Wouters BG: The hypoxic proteome is
influenced by gene-specific changes in mRNA translation. Radiother
Oncol. 76:177–186. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lü X, de la Peña L, Barker C, Camphausen K
and Tofilon PJ: Radiation-induced changes in gene expression
involve recruitment of existing messenger RNAs to and away from
polysomes. Cancer Res. 66:1052–1061. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nordsmark M, Loncaster J, Aquino-Parsons
C, Chou SC, Gebski V, West C, Lindegaard JC, Havsteen H, Davidson
SE, Hunter R, et al: The prognostic value of pimonidazole and
tumour pO2 in human cervix carcinomas after
radiation therapy: A prospective international multi-center study.
Radiother Oncol. 80:123–131. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Magagnin MG, van den Beucken T, Sergeant
K, Lambin P, Koritzinsky M, Devreese B and Wouters BG: The mTOR
target 4E-BP1 contributes to differential protein expression during
normoxia and hypoxia through changes in mRNA translation
efficiency. Proteomics. 8:1019–1028. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Semenza GL, Jiang BH, Leung SW, Passantino
R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements
in the aldolase A, enolase 1, and lactate dehydrogenase A gene
promoters contain essential binding sites for hypoxia-inducible
factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Buono RJ and Lang RK: Hypoxic repression
of lactate dehydrogenase-B in retina. Exp Eye Res. 69:685–693.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Choi KJ, Piao YJ, Lim MJ, Kim JH, Ha J,
Choe W and Kim SS: Overexpressed cyclophilin A in cancer cells
renders resistance to hypoxia- and cisplatin-induced cell death.
Cancer Res. 67:3654–3662. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dundas SR, Lawrie LC, Rooney PH and Murray
GI: Mortalin is over-expressed by colorectal adenocarcinomas and
correlates with poor survival. J Pathol. 205:74–81. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cui Y, Zhang D, Jia Q, Li T, Zhang W and
Han J: Proteomic and tissue array profiling identifies elevated
hypoxia-regulated proteins in pancreatic ductal adenocarcinoma.
Cancer Invest. 27:747–755. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Vaupel P: The role of hypoxia-induced
factors in tumor progression. Oncologist. 9:(Suppl 5). S10–S17.
2004. View Article : Google Scholar
|
|
46
|
Hu R, Jin H, Zhou S, Yang P and Li X:
Proteomic analysis of hypoxia-induced responses in the
syncytialization of human placental cell line BeWo. Placenta.
28:399–407. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Furuta E, Pai SK, Zhan R, Bandyopadhyay S,
Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, et al:
Fatty acid synthase gene is up-regulated by hypoxia via activation
of Akt and sterol regulatory element binding protein-1. Cancer Res.
68:1003–1011. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee AS: Mammalian stress response:
Induction of the glucose-regulated protein family. Curr Opin Cell
Biol. 4:267–273. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fajardo I, Svensson L, Bucht A and Pejler
G: Increased levels of hypoxia-sensitive proteins in allergic
airway inflammation. Am J Respir Crit Care Med. 170:477–484. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Larsen M, Tazzyman S, Lund EL, Junker N,
Lewis CE, Kristjansen PE and Murdoch C: Hypoxia-induced secretion
of macrophage migration-inhibitory factor from MCF-7 breast cancer
cells is regulated in a hypoxia-inducible factor-independent
manner. Cancer Lett. 265:239–249. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liao SH, Zhao XY, Han YH, Zhang J, Wang
LS, Xia L, Zhao KW, Zheng Y, Guo M and Chen GQ: Proteomics-based
identification of two novel direct targets of hypoxia-inducible
factor-1 and their potential roles in migration/invasion of cancer
cells. Proteomics. 9:3901–3912. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pellieux C, Desgeorges A, Pigeon CH,
Chambaz C, Yin H, Hayoz D and Silacci P: Cap G, a gelsolin family
protein modulating protective effects of unidirectional shear
stress. J Biol Chem. 278:29136–29144. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Garrett SC, Varney KM, Weber DJ and
Bresnick AR: S100A4, a mediator of metastasis. J Biol Chem.
281:677–680. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tarabykina S, Griffiths TR, Tulchinsky E,
Mellon JK, Bronstein IB and Kriajevska M: Metastasis-associated
protein S100A4: Spotlight on its role in cell migration. Curr
Cancer Drug Targets. 7:217–228. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bartkowiak K, Effenberger KE, Harder S,
Andreas A, Buck F, Peter-Katalinic J, Pantel K and Brandt BH:
Discovery of a novel unfolded protein response phenotype of cancer
stem/progenitor cells from the bone marrow of breast cancer
patients. J Proteome Res. 9:3158–3168. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Grandjean M, Sermeus A, Branders S,
Defresne F, Dieu M, Dupont P, Raes M, De Ridder M and Feron O:
Hypoxia integration in the serological proteome analysis unmasks
tumor antigens and fosters the identification of anti-phospho-eEF2
antibodies as potential cancer biomarkers. PLoS One. 8:e765082013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yoon JH, Kim J, Kim KL, Kim DH, Jung SJ,
Lee H, Ghim J, Kim D, Park JB, Ryu SH, et al: Proteomic analysis of
hypoxia-induced U373MG glioma secretome reveals novel
hypoxia-dependent migration factors. Proteomics. 14:1494–1502.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chang AC, Janosi J, Hulsbeek M, de Jong D,
Jeffrey KJ, Noble JR and Reddel RR: A novel human cDNA highly
homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol.
112:241–247. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Varghese R, Wong CK, Deol H, Wagner GF and
DiMattia GE: Comparative analysis of mammalian stanniocalcin genes.
Endocrinology. 139:4714–4725. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tamura S, Oshima T, Yoshihara K, Kanazawa
A, Yamada T, Inagaki D, Sato T, Yamamoto N, Shiozawa M, Morinaga S,
et al: Clinical significance of STC1 gene expression in
patients with colorectal cancer. Anticancer Res. 31:325–329.
2011.PubMed/NCBI
|
|
61
|
Nakagawa T, Martinez SR, Goto Y, Koyanagi
K, Kitago M, Shingai T, Elashoff DA, Ye X, Singer FR, Giuliano AE,
et al: Detection of circulating tumor cells in early-stage breast
cancer metastasis to axillary lymph nodes. Clin Cancer Res.
13:4105–4110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cheng J, Gao F, Chen X, Wu J, Xing C, Lv
Z, Xu W, Xie Q, Wu L, Ye S, et al: Prohibitin-2 promotes
hepatocellular carcinoma malignancy progression in hypoxia based on
a label-free quantitative proteomics strategy. Mol Carcinog.
53:820–832. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bogenhagen DF, Wang Y, Shen EL and
Kobayashi R: Protein components of mitochondrial DNA nucleoids in
higher eukaryotes. Mol Cell Proteomics. 2:1205–1216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McClung JK, Jupe ER, Liu XT and Dell'Orco
RT: Prohibitin: Potential role in senescence, development, and
tumor suppression. Exp Gerontol. 30:99–124. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nijtmans LG, de Jong L, Sanz Artal M,
Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H and
Grivell LA: Prohibitins act as a membrane-bound chaperone for the
stabilization of mitochondrial proteins. EMBO J. 19:2444–2451.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Osman C, Merkwirth C and Langer T:
Prohibitins and the functional compartmentalization of
mitochondrial membranes. J Cell Sci. 122:3823–3830. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Valli A, Rodriguez M, Moutsianas L,
Fischer R, Fedele V, Huang HL, Van Stiphout R, Jones D, Mccarthy M,
Vinaxia M, et al: Hypoxia induces a lipogenic cancer cell phenotype
via HIF1α-dependent and -independent pathways. Oncotarget.
6:1920–1941. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Delcourt N, Quevedo C, Nonne C, Fons P,
O'Brien D, Loyaux D, Diez M, Autelitano F, Guillemot JC, Ferrara P,
et al: Targeted identification of sialoglycoproteins in hypoxic
endothelial cells and validation in zebrafish reveal roles for
proteins in angiogenesis. J Biol Chem. 290:3405–3417. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Nagao K and Oka K: HIF-2 directly
activates CD82 gene expression in endothelial cells. Biochem
Biophys Res Commun. 407:260–265. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee P, Goishi K, Davidson AJ, Mannix R,
Zon L and Klagsbrun M: Neuropilin-1 is required for vascular
development and is a mediator of VEGF-dependent angiogenesis in
zebrafish. Proc Natl Acad Sci USA. 99:10470–10475. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mura M, Swain RK, Zhuang X, Vorschmitt H,
Reynolds G, Durant S, Beesley JF, Herbert JM, Sheldon H, Andre M,
et al: Identification and angiogenic role of the novel tumor
endothelial marker CLEC14A. Oncogene. 31:293–305. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Stockwin LH, Blonder J, Bumke MA, Lucas
DA, Chan KC, Conrads TP, Issaq HJ, Veenstra TD, Newton DL and Rybak
SM: Proteomic analysis of plasma membrane from hypoxia-adapted
malignant melanoma. J Proteome Res. 5:2996–3007. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang W, Thompson JW, Wang Z, Wang L, Sheng
H, Foster MW, Moseley MA and Paschen W: Analysis of
oxygen/glucose-deprivation-induced changes in SUMO3 conjugation
using SILAC-based quantitative proteomics. J Proteome Res.
11:1108–1117. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Djidja MC, Chang J, Hadjiprocopis A,
Schmich F, Sinclair J, Mršnik M, Schoof EM, Barker HE, Linding R,
Jørgensen C, et al: Identification of hypoxia-regulated proteins
using MALDI-mass spectrometry imaging combined with quantitative
proteomics. J Proteome Res. 13:2297–2313. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Malec V, Coulson JM, Urbé S and Clague MJ:
Combined analyses of the VHL and hypoxia signaling axes in an
isogenic pairing of renal clear cell carcinoma cells. J Proteome
Res. 14:5263–5272. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chan DA, Sutphin PD, Nguyen P, Turcotte S,
Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, et al:
Targeting GLUT1 and the Warburg effect in renal cell carcinoma by
chemical synthetic lethality. Sci Transl Med. 3:94ra702011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yamasaki T, Seki N, Yoshino H, Itesako T,
Yamada Y, Tatarano S, Hidaka H, Yonezawa T, Nakagawa M and Enokida
H: Tumor-suppressive microRNA-1291 directly regulates
glucose transporter 1 in renal cell carcinoma. Cancer Sci.
104:1411–1419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hosoya N, Sakumoto M, Nakamura Y, Narisawa
T, Bilim V, Motoyama T, Tomita Y and Kondo T: Proteomics identified
nuclear N-myc downstream-regulated gene 1 as a prognostic tissue
biomarker candidate in renal cell carcinoma. Biochim Biophys Acta.
1834:2630–2639. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ren Y, Hao P, Dutta B, Cheow ES, Sim KH,
Gan CS, Lim SK and Sze SK: Hypoxia modulates A431 cellular pathways
association to tumor radioresistance and enhanced migration
revealed by comprehensive proteomic and functional studies. Mol
Cell Proteomics. 12:485–498. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lara PC, Lloret M, Clavo B, Apolinario RM,
Bordón E, Rey A, Falcón O, Alonso AR and Belka C: Hypoxia
downregulates Ku70/80 expression in cervical carcinoma tumors.
Radiother Oncol. 89:222–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Park JE, Tan HS, Datta A, Lai RC, Zhang H,
Meng W, Lim SK and Sze SK: Hypoxic tumor cell modulates its
microenvironment to enhance angiogenic and metastatic potential by
secretion of proteins and exosomes. Mol Cell Proteomics.
9:1085–1099. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ren Y, Hao P, Law SK and Sze SK:
Hypoxia-induced changes to integrin α 3 glycosylation facilitate
invasion in epidermoid carcinoma cell line A431. Mol Cell
Proteomics. 13:3126–3137. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dutta B, Yan R, Lim SK, Tam JP and Sze SK:
Quantitative profiling of chromatome dynamics reveals a novel role
for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics.
13:3236–3249. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yanagisawa K, Konishi H, Arima C, Tomida
S, Takeuchi T, Shimada Y, Yatabe Y, Mitsudomi T, Osada H and
Takahashi T: Novel metastasis-related gene CIM functions in the
regulation of multiple cellular stress-response pathways. Cancer
Res. 70:9949–9958. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
McMahon KM, Volpato M, Chi HY, Musiwaro P,
Poterlowicz K, Peng Y, Scally AJ, Patterson LH, Phillips RM and
Sutton CW: Characterization of changes in the proteome in different
regions of 3D multicell tumor spheroids. J Proteome Res.
11:2863–2875. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yates JR III, Morgan SF, Gatlin CL,
Griffin PR and Eng JK: Method to compare collision-induced
dissociation spectra of peptides: Potential for library searching
and subtractive analysis. Anal Chem. 70:3557–3565. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Craig R, Cortens JC, Fenyo D and Beavis
RC: Using annotated peptide mass spectrum libraries for protein
identification. J Proteome Res. 5:1843–1849. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Frewen BE, Merrihew GE, Wu CC, Noble WS
and MacCoss MJ: Analysis of peptide MS/MS spectra from large-scale
proteomics experiments using spectrum libraries. Anal Chem.
78:5678–5684. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lam H, Deutsch EW, Eddes JS, Eng JK, King
N, Stein SE and Aebersold R: Development and validation of a
spectral library searching method for peptide identification from
MS/MS. Proteomics. 7:655–667. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Nesvizhskii AI, Roos FF, Grossmann J,
Vogelzang M, Eddes JS, Gruissem W, Baginsky S and Aebersold R:
Dynamic spectrum quality assessment and iterative computational
analysis of shotgun proteomic data: Toward more efficient
identification of post-translational modifications, sequence
polymorphisms, and novel peptides. Mol Cell Proteomics. 5:652–670.
2006. View Article : Google Scholar : PubMed/NCBI
|