|
1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stein A, Atanackovic D and Bokemeyer C:
Current standards and new trends in the primary treatment of
colorectal cancer. Eur J Cancer. 47:(Suppl 3). S312–S314. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yoo BH, Lee BH, Kim JS, Kim NJ, Kim SH and
Ryu KW: Effects of Shikunshito-Kamiho on fecal enzymes and
formation of aberrant crypt foci induced by 1,2-dimethylhydrazine.
Biol Pharm Bull. 24:638–642. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee MK, Ahn YM, Lee KR, Jung JH, Jung O-S
and Hong J: Development of a validated liquid chromatographic
method for the quality control of Prunellae Spica: Determination of
triterpenic acids. Anal Chim Acta. 633:271–277. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Psotová J, Kolár M, Soušek J, Švagera Z,
Vičar J and Ulrichová J: Biological activities of Prunella
vulgaris extract. Phytother Res. 17:1082–1087. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cheung H-Y and Zhang Q-F: Enhanced
analysis of triterpenes, flavonoids and phenolic compounds in
Prunella vulgaris L. by capillary zone electrophoresis with
the addition of running buffer modifiers. J Chromatogr A.
1213:231–238. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gu X, Li Y, Mu J and Zhang Y: Chemical
constituents of Prunella vulgaris. J Environ Sci (China).
25:(Suppl 1). S161–S163. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Feng L, Au-Yeung W, Xu Y-H, Wang S-S, Zhu
Q and Xiang P: Oleanolic acid from Prunella vulgaris L.
induces SPC-A-1 cell line apoptosis via regulation of Bax, Bad and
Bcl-2 expression. Asian Pac J Cancer Prev. 12:403–408.
2011.PubMed/NCBI
|
|
10
|
Chu R, Zhao X, Griffin C, Staub RE,
Shoemaker M, Climent J, Leitman D, Cohen I, Shtivelman E and Fong
S: Selective concomitant inhibition of mTORC1 and mTORC2 activity
in estrogen receptor negative breast cancer cells by BN107 and
oleanolic acid. Int J Cancer. 127:1209–1219. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yan SL, Huang CY, Wu ST and Yin MC:
Oleanolic acid and ursolic acid induce apoptosis in four human
liver cancer cell lines. Toxicol In Vitro. 24:842–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nelson AT, Camelio AM, Claussen KR, Cho J,
Tremmel L, DiGiovanni J and Siegel D: Synthesis of oxygenated
oleanolic and ursolic acid derivatives with anti-inflammatory
properties. Bioorg Med Chem Lett. 25:4342–4346. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ryu SY, Oak M-H, Yoon S-K, Cho DI, Yoo GS,
Kim TS and Kim KM: Anti-allergic and anti-inflammatory triterpenes
from the herb of Prunella vulgaris. Planta Med. 66:358–360.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Popov AM, Osipov AN, Korepanova EA,
Krivoshapko ON and Artiukov AA: Study of antioxidant and membrane
activity of rosmarinic acid using different model systems.
Biofizika. 58:775–785. 2013.(In Russian). PubMed/NCBI
|
|
15
|
Maheswarappa N Basappa, Subbaiah V,
Muthupalani M, Yamagani PK, Mohan K, Keshapaga UR, Asokan S
Vaikkathukattil and Kalappurakkal RC: Antioxidant activity of
carnosic acid and rosmarinic acid in raw and cooked ground chicken
patties. J Sci Food Agric. 94:273–279. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fallarini S, Miglio G, Paoletti T, Minassi
A, Amoruso A, Bardelli C, Brunelleschi S and Lombardi G: Clovamide
and rosmarinic acid induce neuroprotective effects in in vitro
models of neuronal death. Br J Pharmacol. 157:1072–1084. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khamse S, Sadr SS, Roghani M, Hasanzadeh G
and Mohammadian M: Rosmarinic acid exerts a neuroprotective effect
in the kainate rat model of temporal lobe epilepsy: Underlying
mechanisms. Pharm Biol. 53:1818–1825. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xu Y, Han S, Lei K, Chang X, Wang K, Li Z
and Liu J: Anti-Warburg effect of rosmarinic acid via miR-155 in
colorectal carcinoma cells. Eur J Cancer Prev. 25:481–489. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hao J, Ding XL, Yang X and Wu XZ:
Prunella vulgaris polysaccharide inhibits growth and
migration of breast carcinoma-associated fibroblasts by suppressing
expression of basic fibroblast growth factor. Chin J Integr Med.
Sep 1–2016.(Epub ahead of print). View Article : Google Scholar
|
|
20
|
Sun H-X, Qin F and Pan Y-J: In vitro and
in vivo immunosuppressive activity of Spica Prunellae ethanol
extract on the immune responses in mice. J Ethnopharmacol.
101:31–36. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lin W, Zheng L, Zhao J, Zhuang Q, Hong Z,
Xu W, Chen Y, Sferra JT and Peng J: Anti-angiogenic effect of Spica
Prunellae extract in vivo and in vitro. Afr J Pharm Pharmacol.
5:2647–2654. 2011.http://www.academicjournals.org/article/article1380896211_Lin%20et%20al%20%202.pdf
|
|
22
|
Hwang SM, Lee YJ, Yoon JJ, Lee SM, Kim JS,
Kang DG and Lee HS: Prunella vulgaris suppresses HG-induced
vascular inflammation via Nrf2/HO-1/eNOS activation. Int J Mol Sci.
13:1258–1268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Collins NH, Lessey EC, DuSell CD,
McDonnell DP, Fowler L, Palomino WA, Illera MJ, Yu X, Mo B, Houwing
AM, et al: Characterization of antiestrogenic activity of the
Chinese herb, Prunella vulgaris, using in vitro and in vivo
(Mouse Xenograft) models. Biol Reprod. 80:375–383. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Feng L, Wang L, Ma YY, Li M and Zhao GQ: A
potential in vitro and in vivo anti-HIV drug screening system for
Chinese herbal medicines. Phytother Res. 26:899–907. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Oh C, Price J, Brindley MA, Widrlechner
MP, Qu L, McCoy JA, Murphy P, Hauck C and Maury W: Inhibition of
HIV-1 infection by aqueous extracts of Prunella vulgaris L.
Virol J. 8:1882011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin W, Zheng L, Zhuang Q, Zhao J, Cao Z,
Zeng J, Lin S, Xu W and Peng J: Spica prunellae promotes cancer
cell apoptosis, inhibits cell proliferation and tumor angiogenesis
in a mouse model of colorectal cancer via suppression of stat3
pathway. BMC Complement Altern Med. 13:1442013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zheng L, Chen Y, Lin W, Zhuang Q, Chen X,
Xu W, Liu X, Peng J and Sferra TJ: Spica Prunellae extract promotes
mitochondriondependent apoptosis in a human colon carcinoma cell
line. Afr J Pharm Pharmacol. 5:327–335. 2011.http://www.academicjournals.org/article/article1380789242_Zheng%20et%20al.pdf
View Article : Google Scholar
|
|
28
|
Feng L, Jia X, Zhu M, Chen Y and Shi F:
Chemoprevention by Prunella vulgaris L. extract of non-small
cell lung cancer via promoting apoptosis and regulating the cell
cycle. Asian Pac J Cancer Prev. 11:1355–1358. 2010.PubMed/NCBI
|
|
29
|
Lin W, Zheng L, Zhuang Q, Shen A, Liu L,
Chen Y, Sferra TJ and Peng J: Spica Prunellae extract inhibits the
proliferation of human colon carcinoma cells via the regulation of
the cell cycle. Oncol Lett. 6:1123–1127. 2013.PubMed/NCBI
|
|
30
|
Kim S-H, Huang C-Y, Tsai C-Y, Lu S-Y, Chiu
C-C and Fang K: The aqueous extract of Prunella vulgaris
suppresses cell invasion and migration in human liver cancer cells
by attenuating matrix metalloproteinases. Am J Chin Med.
40:643–656. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Iwakawa HO and Tomari Y: The functions of
microRNAs: mRNA decay and translational repression. Trends Cell
Biol. 25:651–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ventura A and Jacks T: MicroRNAs and
cancer: Short RNAs go a long way. Cell. 136:586–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li L, Yuan L, Luo J, Gao J, Guo J and Xie
X: MiR-34a inhibits proliferation and migration of breast cancer
through down-regulation of Bcl-2 and SIRT1. Clin Exp Med.
13:109–117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Guessous F, Zhang Y, Dipierro C,
Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen
TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting
multiple oncogenes. Cancer Res. 69:7569–7576. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pang RTK, Leung CON, Ye TM, Liu W, Chiu
PC, Lam KK, Lee KF and Yeung WS: MicroRNA-34a suppresses invasion
through downregulation of Notch1 and Jagged1 in cervical carcinoma
and choriocarcinoma cells. Carcinogenesis. 31:1037–1044. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee
DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al:
Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic
Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fang Y, Feng Y, Wu T, Srinivas S, Yang W,
Fan J, Yang C and Wang S: Aflatoxin B1 negatively regulates
Wnt/β-catenin signaling pathway through activating miR-33a. PLoS
One. 8:e730042013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang W, Lian J, Feng Y, Srinivas S, Guo Z,
Zhong H, Zhuang Z and Wang S: Genome-wide miRNA-profiling of
aflatoxin B1-induced hepatic injury using deep sequencing. Toxicol
Lett. 226:140–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−∆∆C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
McPherson L, Cochrane S and Zhu X: Current
usage of traditional Chinese medicine in the management of breast
cancer: A practitioner's perspective. Integr Cancer Ther.
15:335–342. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liao YH, Lin CC, Lai HC, Chiang JH, Lin JG
and Li TC: Adjunctive traditional Chinese medicine therapy improves
survival of liver cancer patients. Liver Int. 35:2595–2602. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Guo Q, Li J and Lin H: Effect and
molecular mechanisms of traditional chinese medicine on regulating
tumor immunosuppressive microenvironment. BioMed Res Int.
2015:2616202015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cao Z, Lin W, Huang Z, Chen X, Zhao J,
Zheng L, Ye H, Liu Z, Liao L and Du J: Ethyl acetate extraction
from a Chinese herbal formula, Jiedu Xiaozheng Yin, inhibits the
proliferation of hepatocellular carcinoma cells via induction of
G0/G1 phase arrest in vivo and in vitro. Int J Oncol.
42:202–210. 2013.PubMed/NCBI
|
|
44
|
Vermeulen K, Berneman ZN and Van
Bockstaele DR: Cell cycle and apoptosis. Cell Prolif. 36:165–175.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Duechler M, Shehata M, Schwarzmeier JD,
Hoelbl A, Hilgarth M and Hubmann R: Induction of apoptosis by
proteasome inhibitors in B-CLL cells is associated with
downregulation of CD23 and inactivation of Notch2. Leukemia.
19:260–267. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Brzozowa-Zasada M, Piecuch A, Dittfeld A,
Mielańczyk Ł, Michalski M, Wyrobiec G, Harabin-Słowińska M, Kurek J
and Wojnicz R: Notch signalling pathway as an oncogenic factor
involved in cancer development. Contemp Oncol (Pozn). 20:267–272.
2016.PubMed/NCBI
|
|
47
|
Gu Y, Masiero M and Banham AH: Notch
signaling: Its roles and therapeutic potential in hematological
malignancies. Oncotarget. 7:29804–29823. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Misso G, Di Martino MT, De Rosa G, Farooqi
AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P,
Tassone P, et al: Mir-34: A new weapon against cancer? Mol Ther
Nucleic Acids. 3:e1942014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R,
Sun Z and Zheng X: Downregulation of CCND1 and CDK6 by miR-34a
induces cell cycle arrest. FEBS Lett. 582:1564–1568. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hermeking H: The miR-34 family in cancer
and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mao X, Wang G, Zhang W and Li S: A study
on inhibitory effect of Spica prunellae extract on T lymphoma cell
EL-4 tumour. Afr J Tradit Complement Altern Med. 10:318–324.
2013.PubMed/NCBI
|
|
52
|
Artavanis-Tsakonas S, Rand MD and Lake RJ:
Notch signaling: Cell fate control and signal integration in
development. Science. 284:770–776. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lai EC: Notch signaling: Control of cell
communication and cell fate. Development. 131:965–973. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sikandar SS, Pate KT, Anderson S, Dizon D,
Edwards RA, Waterman ML and Lipkin SM: NOTCH signaling is required
for formation and self-renewal of tumor-initiating cells and for
repression of secretory cell differentiation in colon cancer.
Cancer Res. 70:1469–1478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang Z, Zhang Y, Banerjee S, Li Y and
Sarkar FH: Notch-1 down-regulation by curcumin is associated with
the inhibition of cell growth and the induction of apoptosis in
pancreatic cancer cells. Cancer. 106:2503–2513. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pang B, Pang Q, Pang H and Song G:
Clinical effect of Jiutengzhuyu tablets on promoting blood
circulation in women with oviducal obstruction. J Tradit Chin Med.
32:549–553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
de Antonellis P, Medaglia C, Cusanelli E,
Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini
F, Galeone A, et al: MiR-34a targeting of Notch ligand delta-like 1
impairs CD15+/CD133+ tumor-propagating cells
and supports neural differentiation in medulloblastoma. PLoS One.
6:e245842011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J,
Cheng L, Klein OD, Zhou X and Zheng L: Crosstalk between miR-34a
and Notch Signaling Promotes Differentiation in Apical Papilla Stem
Cells (SCAPs). J Dent Res. 93:589–595. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ
and He LY: Silencing Notch-1 induces apoptosis and increases the
chemosensitivity of prostate cancer cells to docetaxel through
Bcl-2 and Bax. Oncol Lett. 3:879–884. 2012.PubMed/NCBI
|
|
60
|
Gao F, Yao M, Shi Y, Hao J, Ren Y, Liu Q,
Wang X and Duan H: Notch pathway is involved in high
glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways.
J Cell Biochem. 114:1029–1038. 2013. View Article : Google Scholar : PubMed/NCBI
|