|
1
|
Freedberg IM, Eisen AZ, Wolff K, Austen
KF, Goldsmith LA and Katz S: Fitzpatrick's Dermatology in general
medicine. 6th. McGraw-Hil; New York, NY: 2003
|
|
2
|
Rubin AI, Chen EH and Ratner D: Basal-cell
carcinoma. N Engl J Med. 353:2262–2269. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stern RS: Prevalence of a history of skin
cancer in 2007: Results of an incidence-based model. Arch Dermatol.
146:279–282. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rogers HW, Weinstock MA, Harris AR,
Hinckley MR, Feldman SR, Fleischer AB and Coldiron BM: Incidence
estimate of nonmelanoma skin cancer in the United States, 2006.
Arch Dermatol. 146:283–287. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Diffey BL and Langtry JA: Skin cancer
incidence and the ageing population. Br J Dermatol. 153:679–680.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lanoue J and Goldenberg G: Basal cell
carcinoma: A comprehensive review of existing and emerging
nonsurgical therapies. J Clin Aesthet Dermatol. 9:26–36.
2016.PubMed/NCBI
|
|
7
|
Renaud-Vilmer C and Basset-Seguin N: Basal
cell carcinomas. Rev Prat. 64:37–44. 2014.(In French). PubMed/NCBI
|
|
8
|
Alam M and Ratner D: Cutaneous
squamous-cell carcinoma. N Engl J Med. 344:975–983. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ch'ng S, Maitra A, Lea R, Brasch H and Tan
ST: Parotid metastasis - an independent prognostic factor for head
and neck cutaneous squamous cell carcinoma. J Plast Reconstr
Aesthet Surg. 59:1288–1293. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Johnson TM, Rowe DE, Nelson BR and Swanson
NA: Squamous cell carcinoma of the skin (excluding lip and oral
mucosa). J Am Acad Dermatol. 26:467–484. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rowe DE, Carroll RJ and Day CL Jr:
Prognostic factors for local recurrence, metastasis, and survival
rates in squamous cell carcinoma of the skin, ear, and lip.
Implications for treatment modality selection. J Am Acad Dermatol.
26:976–990. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rudolph R and Zelac DE: Squamous cell
carcinoma of the skin. Plast Reconstr Surg. 114:82e–94e. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Weinberg AS, Ogle CA and Shim EK:
Metastatic cutaneous squamous cell carcinoma: An update. Dermatol
Surg. 33:885–899. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hakenberg OW, Compérat EM, Minhas S,
Necchi A, Protzel C, Watkin N, et al: European Association of
Urology: EAU guidelines on penile cancer: 2014 update. Eur Urol.
67:142–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Spiess PE, Dhillon J, Baumgarten AS,
Johnstone PA and Giuliano AR: Pathophysiological basis of human
papillomavirus in penile cancer: Key to prevention and delivery of
more effective therapies. CA Cancer J Clin. 66:481–495. 2016.
View Article : Google Scholar
|
|
17
|
Cakir BÖ, Adamson P and Cingi C:
Epidemiology and economic burden of nonmelanoma skin cancer. Facial
Plast Surg Clin North Am. 20:419–422. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kayes O, Ahmed HU, Arya M and Minhas S:
Molecular and genetic pathways in penile cancer. Lancet Oncol.
8:420–429. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Protzel C and Spiess PE: Molecular
research in penile cancer-lessons learned from the past and bright
horizons of the future? Int J Mol Sci. 14:19494–19505. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Berton TR, Pavone A and Fischer SM:
Ultraviolet-B irradiation alters the cell cycle machinery in murine
epidermis in vivo. J Invest Dermatol. 117:1171–1178. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Oberyszyn TM: Non-melanoma skin cancer:
Importance of gender, immunosuppressive status and vitamin D.
Cancer Lett. 261:127–136. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Voiculescu V, Calenic B, Ghita M, Lupu M,
Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, et
al: From normal skin to squamous cell carcinoma: A quest for novel
biomarkers. Dis Markers. 2016:45174922016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ratushny V, Gober MD, Hick R, Ridky TW and
Seykora JT: From keratinocyte to cancer: The pathogenesis and
modeling of cutaneous squamous cell carcinoma. J Clin Invest.
122:464–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stockfleth E, Ortonne JP and Alomar A:
Actinic keratosis and field cancerisation. Eur J Dermatol. 21:(Supp
1). 3–11. 2011.PubMed/NCBI
|
|
25
|
Lugović L, Situm M, Vurnek M and Buljan M:
Influence of psychoneuroimmunologic factors on patients with
malignant skin diseases. Acta Med Croatica. 61:383–389. 2007.(In
Croatian). PubMed/NCBI
|
|
26
|
Leon A, Ceauşu Z, Ceauşu M, Ardeleanu C
and Mehedinţi R: Mast cells and dendritic cells in basal cell
carcinoma. Rom J Morphol Embryol. 50:85–90. 2009.PubMed/NCBI
|
|
27
|
Calenic B, Greabu M, Caruntu C, Tanase C
and Battino M: Oral keratinocyte stem/progenitor cells: Specific
markers, molecular signaling pathways and potential uses.
Periodontol 2000. 69:68–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Neagu M, Caruntu C, Constantin C, Boda D,
Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin
carcinogenesis: Updates in experimental models (Review). Oncol Rep.
35:2516–2528. 2016.PubMed/NCBI
|
|
29
|
Neagu M, Constantin C, Dumitrascu GR, Lupu
AR, Caruntu C, Boda D and Zurac S: Inflammation markers in
cutaneous melanoma - edgy biomarkers for prognosis. Discoveries.
3:e382015. View Article : Google Scholar
|
|
30
|
Fagundes CP, Glaser R, Johnson SL,
Andridge RR, Yang EV, Di Gregorio MP, Chen M, Lambert DR, Jewell
SD, Bechtel MA, et al: Basal cell carcinoma: Stressful life events
and the tumor environment. Arch Gen Psychiatry. 69:618–626. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Saul AN, Oberyszyn TM, Daugherty C,
Kusewitt D, Jones S, Jewell S, Malarkey WB, Lehman A, Lemeshow S
and Dhabhar FS: Chronic stress and susceptibility to skin cancer. J
Natl Cancer Inst. 97:1760–1767. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Terao M and Katayama I: Local
cortisol/corticosterone activation in skin physiology and
pathology. J Dermatol Sci. 84:11–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Terao M, Itoi S, Murota H and Katayama I:
Expression profiles of cortisol-inactivating enzyme,
11β-hydroxysteroid dehydrogenase-2, in human epidermal tumors and
its role in keratinocyte proliferation. Exp Dermatol. 22:98–101.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Slominski A and Wortsman J:
Neuroendocrinology of the skin. Endocr Rev. 21:457–487. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Slominski A: Neuroendocrine system of the
skin. Dermatology. 211:199–208. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zmijewski MA and Slominski AT:
Neuroendocrinology of the skin: An overview and selective analysis.
Dermatoendocrinol. 3:3–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Căruntu C, Grigore C, Căruntu A,
Diaconeasa A and Boda D: The role of stress in skin diseases.
Intern Med. 8:73–84. 2011.
|
|
38
|
Căruntu C, Boda D, Musat S, Căruntu A and
Mandache E: Stress-induced mast cell activation in glabrous and
hairy skin. Mediators Inflamm. 2014:1059502014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Căruntu C, Boda D, Musat S, Căruntu A,
Poenaru E, Calenic B, Savulescu-Fiedler I, Draghia A, Rotaru M and
Badarau AI: Stress effects on cutaneous nociceptive nerve fibers
and their neurons of origin in rats. Rom Biotechnol Lett.
19:95182014.
|
|
40
|
Arck P and Paus R: From the brain-skin
connection: The neuroendocrine-immune misalliance of stress and
itch. Neuroimmunomodulation. 13:347–356. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gupta MA and Gupta AK: Psychiatric and
psychological co-morbidity in patients with dermatologic disorders:
Epidemiology and management. Am J Clin Dermatol. 4:833–842. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Căruntu C, Ghita MA, Căruntu A and Boda D:
The role of stress in the multifactorial etiopathogenesis of acne.
Ro Med J. 58:98–101. 2011.
|
|
43
|
Sinnya S and De'Ambrosis B: Stress and
melanoma: Increasing the evidence towards a causal basis. Arch
Dermatol Res. 305:851–856. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sanzo M, Colucci R, Arunachalam M, Berti S
and Moretti S: Stress as a possible mechanism in melanoma
progression. Dermatol Res Pract. 2010:4834932010.PubMed/NCBI
|
|
45
|
de Vries E, Trakatelli M, Kalabalikis D,
Ferrandiz L, Ruiz-de-Casas A, Moreno-Ramirez D, Sotiriadis D,
Ioannides D, Aquilina S, Apap C, et al: EPIDERM Group: Known and
potential new risk factors for skin cancer in European populations:
A multicentre case-control study. Br J Dermatol. 167:(Suppl 2).
1–13. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bulman A, Neagu M and Constantin C:
Immunomics in skin cancer - improvement in diagnosis, prognosis and
therapy monitoring. Curr Proteomics. 10:202–217. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Parker J, Klein SL, McClintock MK, Morison
WL, Ye X, Conti CJ, Peterson N, Nousari CH and Tausk FA: Chronic
stress accelerates ultraviolet-induced cutaneous carcinogenesis. J
Am Acad Dermatol. 51:919–922. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Reiss Y, Proudfoot AE, Power CA, Campbell
JJ and Butcher EC: CC chemokine receptor (CCR)4 and the CCR10
ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte
trafficking to inflamed skin. J Exp Med. 194:1541–1547. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dighe AS, Richards E, Old LJ and Schreiber
RD: Enhanced in vivo growth and resistance to rejection of tumor
cells expressing dominant negative IFN γ receptors. Immunity.
1:447–456. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Voest EE, Kenyon BM, O'Reilly MS, Truitt
G, D'Amato RJ and Folkman J: Inhibition of angiogenesis in vivo by
interleukin 12. J Natl Cancer Inst. 87:581–586. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shankaran V, Ikeda H, Bruce AT, White JM,
Swanson PE, Old LJ and Schreiber RD: IFNgamma and lymphocytes
prevent primary tumour development and shape tumour immunogenicity.
Nature. 410:1107–1111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sephton SE, Dhabhar FS, Classen C and
Spiegel D: The diurnal cortisol slope as a predictor of immune
reactivity to interpersonal stress. Brain Behav Immun.
14:1282000.
|
|
53
|
Mormont MC and Lévi F: Circadian-system
alterations during cancer processes: A review. Int J Cancer.
70:241–247. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Filipski E, King VM, Li X, Granda TG,
Mormont MC, Liu X, Claustrat B, Hastings MH and Lévi F: Host
circadian clock as a control point in tumor progression. J Natl
Cancer Inst. 94:690–697. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fu L and Lee CC: The circadian clock:
Pacemaker and tumour suppressor. Nat Rev Cancer. 3:350–361. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sephton SE, Sapolsky RM, Kraemer HC and
Spiegel D: Early mortality in metastatic breast cancer patients
with absent or abnormal diurnal cortisol rhythms. J Natl Cancer
Inst. 92:994–1000. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wong CS, Strange RC and Lear JT: Basal
cell carcinoma. BMJ. 327:794–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Terao M, Murota H, Kimura A, Kato A,
Ishikawa A, Igawa K, Miyoshi E and Katayama I: 11β-Hydroxysteroid
dehydrogenase-1 is a novel regulator of skin homeostasis and a
candidate target for promoting tissue repair. PLoS One.
6:e250392011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dhabhar FS and McEwen BS: Acute stress
enhances while chronic stress suppresses cell-mediated immunity in
vivo: A potential role for leukocyte trafficking. Brain Behav
Immun. 11:286–306. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kripke ML: Ultraviolet radiation and
immunology: Something new under the sun - presidential address.
Cancer Res. 54:6102–6105. 1994.PubMed/NCBI
|
|
61
|
Granstein RD and Matsui MS: UV
radiation-induced immunosuppression and skin cancer. Cutis.
74:(Suppl). 4–9. 2004.PubMed/NCBI
|
|
62
|
Ben-Eliyahu S, Yirmiya R, Liebeskind JC,
Taylor AN and Gale RP: Stress increases metastatic spread of a
mammary tumor in rats: Evidence for mediation by the immune system.
Brain Behav Immun. 5:193–205. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ben-Eliyahu S: The promotion of tumor
metastasis by surgery and stress: Immunological basis and
implications for psychoneuroimmunology. Brain Behav Immun.
17:(Suppl 1). S27–S36. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Dhabhar FS, Miller AH, McEwen BS and
Spencer RL: Effects of stress on immune cell distribution. Dynamics
and hormonal mechanisms. J Immunol. 154:5511–5527. 1995.PubMed/NCBI
|
|
65
|
Dhabhar FS, Miller AH, McEwen BS and
Spencer RL: Stress-induced changes in blood leukocyte distribution.
Role of adrenal steroid hormones. J Immunol. 157:1638–1644.
1996.PubMed/NCBI
|
|
66
|
Dhabhar FS and McEwen BS: Enhancing versus
suppressive effects of stress hormones on skin immune function.
Proc Natl Acad Sci USA. 96:1059–1064. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dhabhar FS and Viswanathan K: Short-term
stress experienced at time of immunization induces a long-lasting
increase in immunologic memory. Am J Physiol Regul Integr Comp
Physiol. 289:R738–R744. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Saint-Mezard P, Chavagnac C, Bosset S,
Ionescu M, Peyron E, Kaiserlian D, Nicolas JF and Bérard F:
Psychological stress exerts an adjuvant effect on skin dendritic
cell functions in vivo. J Immunol. 171:4073–4080. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Viswanathan K, Daugherty C and Dhabhar FS:
Stress as an endogenous adjuvant: Augmentation of the immunization
phase of cell-mediated immunity. Int Immunol. 17:1059–1069. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wood PG, Karol MH, Kusnecov AW and Rabin
BS: Enhancement of antigen-specific humoral and cell-mediated
immunity by electric footshock stress in rats. Brain Behav Immun.
7:121–134. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dhabhar FS, Saul AN, Daugherty C, Holmes
TH, Bouley DM and Oberyszyn TM: Short-term stress enhances cellular
immunity and increases early resistance to squamous cell carcinoma.
Brain Behav Immun. 24:127–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bernabé DG, Tamae AC, Biasoli ÉR and
Oliveira SHP: Stress hormones increase cell proliferation and
regulates interleukin-6 secretion in human oral squamous cell
carcinoma cells. Brain Behav Immun. 25:574–583. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lackovicova L, Banovska L, Bundzikova J,
Janega P, Bizik J, Kiss A and Mravec B: Chemical sympathectomy
suppresses fibrosarcoma development and improves survival of
tumor-bearing rats. Neoplasma. 58:424–429. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Coelho M, Moz M, Correia G, Teixeira A,
Medeiros R and Ribeiro L: Antiproliferative effects of β-blockers
on human colorectal cancer cells. Oncol Rep. 33:2513–2520.
2015.PubMed/NCBI
|
|
75
|
Liou SF, Lin HH, Liang JC, Chen IJ and Yeh
JL: Inhibition of human prostate cancer cells proliferation by a
selective alpha1-adrenoceptor antagonist labedipinedilol-A involves
cell cycle arrest and apoptosis. Toxicology. 256:13–24. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Schallreuter KU, Lemke KR, Pittelkow MR,
Wood JM, Körner C and Malik R: Catecholamines in human keratinocyte
differentiation. J Invest Dermatol. 104:953–957. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pullar CE, Rizzo A and Isseroff RR:
beta-Adrenergic receptor antagonists accelerate skin wound healing:
Evidence for a catecholamine synthesis network in the epidermis. J
Biol Chem. 281:21225–21235. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Winkelmann RK: Cutaneous nerves in
relation to epithelial tumors. J Invest Dermatol. 27:273–279. 1956.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lutgendorf SK, Cole S, Costanzo E, Bradley
S, Coffin J, Jabbari S, Rainwater K, Ritchie JM, Yang M and Sood
AK: Stress-related mediators stimulate vascular endothelial growth
factor secretion by two ovarian cancer cell lines. Clin Cancer Res.
9:4514–4521. 2003.PubMed/NCBI
|
|
80
|
Lutgendorf SK, Johnsen EL, Cooper B,
Anderson B, Sorosky JI, Buller RE and Sood AK: Vascular endothelial
growth factor and social support in patients with ovarian
carcinoma. Cancer. 95:808–815. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Roy R, Zhang B and Moses MA: Making the
cut: Protease-mediated regulation of angiogenesis. Exp Cell Res.
312:608–622. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sood AK, Bhatty R, Kamat AA, Landen CN,
Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S and Cole SW:
Stress hormone-mediated invasion of ovarian cancer cells. Clin
Cancer Res. 12:369–375. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tammela T, Enholm B, Alitalo K and
Paavonen K: The biology of vascular endothelial growth factors.
Cardiovasc Res. 65:550–563. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tas F, Oguz H, Argon A, Duranyildiz D,
Camlica H, Yasasever V and Topuz E: The value of serum levels of
IL-6, TNF-alpha, and erythropoietin in metastatic malignant
melanoma: Serum IL-6 level is a valuable prognostic factor at least
as serum LDH in advanced melanoma. Med Oncol. 22:241–246. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ugurel S, Rappl G, Tilgen W and Reinhold
U: Increased serum concentration of angiogenic factors in malignant
melanoma patients correlates with tumor progression and survival. J
Clin Oncol. 19:577–583. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Al-Wadei HAN, Plummer HK III and Schuller
HM: Nicotine stimulates pancreatic cancer xenografts by systemic
increase in stress neurotransmitters and suppression of the
inhibitory neurotransmitter gamma-aminobutyric acid.
Carcinogenesis. 30:506–511. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Schuller HM, Al-Wadei HAN, Ullah MF and
Plummer HK III: Regulation of pancreatic cancer by
neuropsychological stress responses: A novel target for
intervention. Carcinogenesis. 33:191–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yang EV, Sood AK, Chen M, Li Y, Eubank TD,
Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, et al:
Norepinephrine up-regulates the expression of vascular endothelial
growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in
nasopharyngeal carcinoma tumor cells. Cancer Res. 66:10357–10364.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang D, Ma QY, Hu HT and Zhang M:
β2-adrenergic antagonists suppress pancreatic cancer cell invasion
by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther. 10:19–29.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zurac S, Neagu M, Constantin C, Cioplea M,
Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et
al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in
cutaneous melanoma with regression and their possible function as
prognostic predictors. Oncol Lett. 11:3354–3360. 2016.PubMed/NCBI
|
|
91
|
Yucel T, Mutnal A, Fay K, Fligiel SE, Wang
T, Johnson T, Baker SR and Varani J: Matrix metalloproteinase
expression in basal cell carcinoma: Relationship between enzyme
profile and collagen fragmentation pattern. Exp Mol Pathol.
79:151–160. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang EV and Eubank TD: The impact of
adrenergic signaling in skin cancer progression: Possible
repurposing of β-blockers for treatment of skin cancer. Cancer
Biomark. 13:155–160. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang EV, Bane CM, MacCallum RC,
Kiecolt-Glaser JK, Malarkey WB and Glaser R: Stress-related
modulation of matrix metalloproteinase expression. J Neuroimmunol.
133:144–150. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Dumas V, Kanitakis J, Charvat S, Euvrard
S, Faure M and Claudy A: Expression of basement membrane antigens
and matrix metalloproteinases 2 and 9 in cutaneous basal and
squamous cell carcinomas. Anticancer Res. 19:(4B). 2929–2938.
1999.PubMed/NCBI
|
|
95
|
Lupu M, Caruntu C, Ghita MA, Voiculescu V,
Voiculescu S, Rosca AE, Caruntu A, Moraru L, Popa IM, Calenic B, et
al: Gene expression and proteome analysis as sources of biomarkers
in basal cell carcinoma. Dis Markers. 2016:98312372016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Peterson SC, Eberl M, Vagnozzi AN, Belkadi
A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA
and Wong SY: Basal cell carcinoma preferentially arises from stem
cells within hair follicle and mechanosensory niches. Cell Stem
Cell. 16:400–412. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
English KB, Kavka-Van Norman D and Horch
K: Effects of chronic denervation in type I cutaneous
mechanoreceptors (Haarscheiben). Anat Rec. 207:79–88. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nurse CA, Macintyre L and Diamond J: A
quantitative study of the time course of the reduction in Merkel
cell number within denervated rat touch domes. Neuroscience.
11:521–533. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tilling T and Moll I: Which are the cells
of origin in merkel cell carcinoma? J Skin Cancer. 2012:6804102012.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Iyengar B: Modulation of melanocytic
activity by acetylcholine. Acta Anat (Basel). 136:139–141. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Scholzen T, Armstrong CA, Bunnett NW,
Luger TA, Olerud JE and Ansel JC: Neuropeptides in the skin:
Interactions between the neuroendocrine and the skin immune
systems. Exp Dermatol. 7:81–96. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Seiffert K and Granstein RD: Neuropeptides
and neuroendocrine hormones in ultraviolet radiation-induced
immunosuppression. Methods. 28:97–103. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Holzer P: Local effector functions of
capsaicin-sensitive sensory nerve endings: Involvement of
tachykinins, calcitonin gene-related peptide and other
neuropeptides. Neuroscience. 24:739–768. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Richardson JD and Vasko MR: Cellular
mechanisms of neurogenic inflammation. J Pharmacol Exp Ther.
302:839–845. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Roosterman D, Goerge T, Schneider SW,
Bunnett NW and Steinhoff M: Neuronal control of skin function: The
skin as a neuroimmunoendocrine organ. Physiol Rev. 86:1309–1379.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Căruntu C and Boda D: Evaluation through
in vivo reflectance confocal microscopy of the cutaneous neurogenic
inflammatory reaction induced by capsaicin in human subjects. J
Biomed Opt. 17:0850032012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zaidi M, Moonga BS, Bevis PJ, Bascal ZA
and Breimer LH: The calcitonin gene peptides: Biology and clinical
relevance. Crit Rev Clin Lab Sci. 28:109–174. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hosoi J, Murphy GF, Egan CL, Lerner EA,
Grabbe S, Asahina A and Granstein RD: Regulation of Langerhans cell
function by nerves containing calcitonin gene-related peptide.
Nature. 363:159–163. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Asahina A, Hosoi J, Grabbe S and Granstein
RD: Modulation of Langerhans cell function by epidermal nerves. J
Allergy Clin Immunol. 96:1178–1182. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Gillardon F, Moll I, Michel S, Benrath J,
Weihe E and Zimmermann M: Calcitonin gene-related peptide and
nitric oxide are involved in ultraviolet radiation-induced
immunosuppression. Eur J Pharmacol. 293:395–400. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Seike M, Ikeda M, Morimoto A, Matsumoto M
and Kodama H: Increased synthesis of calcitonin gene-related
peptide stimulates keratinocyte proliferation in murine
UVB-irradiated skin. J Dermatol Sci. 28:135–143. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Niizeki H, Alard P and Streilein JW:
Calcitonin gene-related peptide is necessary for ultraviolet
B-impaired induction of contact hypersensitivity. J Immunol.
159:5183–5186. 1997.PubMed/NCBI
|
|
113
|
Legat FJ and Wolf P: Photodamage to the
cutaneous sensory nerves: Role in photoaging and carcinogenesis of
the skin? Photochem Photobiol Sci. 5:170–176. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sjöholm A: Intracellular signal
transduction pathways that control pancreatic β-cell proliferation.
FEBS Lett. 311:85–90. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Takahashi K, Nakanishi S and Imamura S:
Direct effects of cutaneous neuropeptides on adenylyl cyclase
activity and proliferation in a keratinocyte cell line: Stimulation
of cyclic AMP formation by CGRP and VIP/PHM, and inhibition by NPY
through G protein-coupled receptors. J Invest Dermatol.
101:646–651. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Green H: Terminal differentiation of
cultured human epidermal cells. Cell. 11:405–416. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Green H: Cyclic AMP in relation to
proliferation of the epidermal cell: A new view. Cell. 15:801–811.
1978. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yoshikawa K, Takeda J, Nemoto O, Halprin
KM and Adachi K: Activation of cAMP-dependent protein kinase in
epidermis by the compounds which increase epidermal cAMP. J Invest
Dermatol. 77:397–401. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Elgjo K: Epidermal chalone and cyclic AMP:
An in vivo study. J Invest Dermatol. 64:14–18. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Delecluse C, Fukuyama K and Epstein WL:
Dibutyryl cyclic AMP-induced differentiation of epidermal cells in
tissue culture. J Invest Dermatol. 66:8–13. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Voorhees JJ, Duell EA and Kelsey WH:
Dibutyryl cyclic AMP inhibition of epidermal cell division. Arch
Dermatol. 105:384–386. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Marks F and Grimm W: Diurnal fluctuation
and -adrenergic elevation of cyclic AMP in mouse epidermis in vivo.
Nat New Biol. 240:178–179. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wiesenfeld-Hallin Z, Hökfelt T, Lundberg
JM, Forssmann WG, Reinecke M, Tschopp FA and Fischer JA:
Immunoreactive calcitonin gene-related peptide and substance P
coexist in sensory neurons to the spinal cord and interact in
spinal behavioral responses of the rat. Neurosci Lett. 52:199–204.
1984. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Regoli D, Boudon A and Fauchére JL:
Receptors and antagonists for substance P and related peptides.
Pharmacol Rev. 46:551–599. 1994.PubMed/NCBI
|
|
125
|
Bang R, Sass G, Kiemer AK, Vollmar AM,
Neuhuber WL and Tiegs G: Neurokinin-1 receptor antagonists
CP-96,345 and L-733,060 protect mice from cytokine-mediated liver
injury. J Pharmacol Exp Ther. 305:31–39. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Catalioto RM, Criscuoli M, Cucchi P,
Giachetti A, Gianotti D, Giuliani S, Lecci A, Lippi A, Patacchini
R, Quartara L, et al: MEN 11420 (Nepadutant), a novel glycosylated
bicyclic peptide tachykinin NK2 receptor antagonist. Br J
Pharmacol. 123:81–91. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Esteban F, Muñoz M, González-Moles MA and
Rosso M: A role for substance P in cancer promotion and
progression: A mechanism to counteract intracellular death signals
following oncogene activation or DNA damage. Cancer Metastasis Rev.
25:137–145. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Muñoz M, Pérez A, Coveñas R, Rosso M and
Castro E: Antitumoural action of L-733,060 on neuroblastoma and
glioma cell lines. Arch Ital Biol. 142:105–112. 2004.PubMed/NCBI
|
|
129
|
Muñoz M, Rosso M, Pérez A, Coveñas R,
Rosso R, Zamarriego C and Piruat JI: The NK1 receptor is involved
in the antitumoural action of L-733,060 and in the mitogenic action
of substance P on neuroblastoma and glioma cell lines.
Neuropeptides. 39:427–432. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Moles MA González, Mosqueda-Taylor A,
Esteban F, Gil-Montoya JA, Díaz-Franco MA, Delgado M and Muñoz M:
Cell proliferation associated with actions of the substance P/NK-1
receptor complex in keratocystic odontogenic tumours. Oral Oncol.
44:1127–1133. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Moles MA González, Esteban F, Ruiz-Ávila
I, Montoya JA Gil, Brener S, Bascones-Martínez A and Muñoz M: A
role for the substance P/NK-1 receptor complex in cell
proliferation and apoptosis in oral lichen planus. Oral Dis.
15:162–169. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Staniek V, Misery L, Péguet-Navarro J,
Abello J, Doutremepuich JD, Claudy A and Schmitt D: Binding and in
vitro modulation of human epidermal Langerhans cell functions by
substance P. Arch Dermatol Res. 289:285–291. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Eschenfelder CC, Benrath J, Zimmermann M
and Gillardon F: Involvement of substance P in ultraviolet
irradiation-induced inflammation in rat skin. Eur J Neurosci.
7:1520–1526. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Benrath J, Eschenfelder C, Zimmerman M and
Gillardon F: Calcitonin gene-related peptide, substance P and
nitric oxide are involved in cutaneous inflammation following
ultraviolet irradiation. Eur J Pharmacol. 293:87–96. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Koon HW, Zhao D, Na X, Moyer MP and
Pothoulakis C: Metalloproteinases and transforming growth
factor-alpha mediate substance P-induced mitogen-activated protein
kinase activation and proliferation in human colonocytes. J Biol
Chem. 279:45519–45527. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Brener S, González-Moles MA, Tostes D,
Esteban F, Gil-Montoya JA, Ruiz-Avila I, Bravo M and Muñoz M: A
role for the substance P/NK-1 receptor complex in cell
proliferation in oral squamous cell carcinoma. Anticancer Res.
29:2323–2329. 2009.PubMed/NCBI
|
|
137
|
Weinstock JV, Blum A, Walder J and Walder
R: Eosinophils from granulomas in murine schistosomiasis mansoni
produce substance P. J Immunol. 141:961–966. 1988.PubMed/NCBI
|
|
138
|
Vincent SR and Hope BT: Neurons that say
NO. Trends Neurosci. 15:108–113. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Lippe IT, Stabentheiner A and Holzer P:
Participation of nitric oxide in the mustard oil-induced neurogenic
inflammation of the rat paw skin. Eur J Pharmacol. 232:113–120.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Gallo O, Masini E, Morbidelli L, Franchi
A, Fini-Storchi I, Vergari WA and Ziche M: Role of nitric oxide in
angiogenesis and tumor progression in head and neck cancer. J Natl
Cancer Inst. 90:587–596. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Thomsen LL, Lawton FG, Knowles RG, Beesley
JE, Riveros-Moreno V and Moncada S: Nitric oxide synthase activity
in human gynecological cancer. Cancer Res. 54:1352–1354.
1994.PubMed/NCBI
|
|
142
|
Thomsen LL, Miles DW, Happerfield L,
Bobrow LG, Knowles RG and Moncada S: Nitric oxide synthase activity
in human breast cancer. Br J Cancer. 72:41–44. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Nathan C: Inducible nitric oxide synthase:
what difference does it make? J Clin Invest. 100:2417–2423. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Song ZJ, Gong P and Wu YE: Relationship
between the expression of iNOS, VEGF, tumor angiogenesis and
gastric cancer. World J Gastroenterol. 8:591–595. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Yagihashi N, Kasajima H, Sugai S,
Matsumoto K, Ebina Y, Morita T, Murakami T and Yagihashi S:
Increased in situ expression of nitric oxide synthase in human
colorectal cancer. Virchows Arch. 436:109–114. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Rosbe KW, Prazma J, Petrusz P, Mims W,
Ball SS and Weissler MC: Immunohistochemical characterization of
nitric oxide synthase activity in squamous cell carcinoma of the
head and neck. Otolaryngol Head Neck Surg. 113:541–549. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Brennan PA, Umar T, Smith GI, Lo CH and
Tant S: Expression of nitric oxide synthase-2 in cutaneous squamous
cell carcinoma of the head and neck. Br J Oral Maxillofac Surg.
40:191–194. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Brennan PA, Umar T, Bowden J, Hobkirk A,
Spedding AV, Conroy B, Zaki G and Macpherson DW: Nitric oxide
synthase expression is downregulated in basal cell carcinoma of the
head and neck. Br J Oral Maxillofac Surg. 38:633–636. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Andrade SP, Hart IR and Piper PJ:
Inhibitors of nitric oxide synthase selectively reduce flow in
tumor-associated neovasculature. Br J Pharmacol. 107:1092–1095.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Maeda H, Noguchi Y, Sato K and Akaike T:
Enhanced vascular permeability in solid tumor is mediated by nitric
oxide and inhibited by both new nitric oxide scavenger and nitric
oxide synthase inhibitor. Jpn J Cancer Res. 85:331–334. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Connelly ST, Macabeo-Ong M, Dekker N,
Jordan RC and Schmidt BL: Increased nitric oxide levels and iNOS
over-expression in oral squamous cell carcinoma. Oral Oncol.
41:261–267. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Vural P, Erzengin D, Canbaz M and Selçuki
D: Nitric oxide and endothelin-1,2 in actinic keratosis and basal
cell carcinoma: Changes in nitric oxide/endothelin ratio. Int J
Dermatol. 40:704–708. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Vidal MJ, Zocchi MR, Poggi A, Pellegatta F
and Chierchia SL: Involvement of nitric oxide in tumor cell
adhesion to cytokine-activated endothelial cells. J Cardiovasc
Pharmacol. 20:(Suppl 12). S155–S159. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Dong Z, Staroselsky AH, Qi X, Xie K and
Fidler IJ: Inverse correlation between expression of inducible
nitric oxide synthase activity and production of metastasis in
K-1735 murine melanoma cells. Cancer Res. 54:789–793.
1994.PubMed/NCBI
|
|
155
|
Brazeau P, Vale W, Burgus R, Ling N,
Butcher M, Rivier J and Guillemin R: Hypothalamic polypeptide that
inhibits the secretion of immunoreactive pituitary growth hormone.
Science. 179:77–79. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Jin Z, Mori Y, Hamilton JP, Olaru A, Sato
F, Yang J, Ito T, Kan T, Agarwal R and Meltzer SJ: Hypermethylation
of the somatostatin promoter is a common, early event in human
esophageal carcinogenesis. Cancer. 112:43–49. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Jackson K, Soutto M, Peng D, Hu T, Marshal
D and El-Rifai W: Epigenetic silencing of somatostatin in gastric
cancer. Dig Dis Sci. 56:125–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Mori Y, Cai K, Cheng Y, Wang S, Paun B,
Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, et al: A genome-wide
search identifies epigenetic silencing of somatostatin,
tachykinin-1, and 5 other genes in colon cancer. Gastroenterology.
131:797–808. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Reubi JC and Laissue JA: Multiple actions
of somatostatin in neoplastic disease. Trends Pharmacol Sci.
16:110–115. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Scambia G, Panici P Benedetti, Baiocchi G,
Andreani C, Gaggini C, Giannelli S and Mancuso S: Growth inhibitory
effect of somatostatin (SS) on human breast cancer cells in
culture. J Steroid Biochem. 28:1651987. View Article : Google Scholar
|
|
161
|
Liebow C, Reilly C, Serrano M and Schally
AV: Somatostatin analogues inhibit growth of pancreatic cancer by
stimulating tyrosine phosphatase. Proc Natl Acad Sci USA.
86:2003–2007. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Taylor JE, Bogden AE, Moreau J-P and Coy
DH: In vitro and in vivo inhibition of human small cell lung
carcinoma (NCI-H69) growth by a somatostatin analogue. Biochem
Biophys Res Commun. 153:81–86. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Gill GN and Lazar CS: Increased
phosphotyrosine content and inhibition of proliferation in
EGF-treated A431 cells. Nature. 293:305–307. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Mascardo RN and Sherline P: Somatostatin
inhibits rapid centrosomal separation and cell proliferation
induced by epidermal growth factor. Endocrinology. 111:1394–1396.
1982. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Kamiya Y, Ohmura E, Arai M, Fujii T,
Hayakawa F, Ito J, Kawaguchi M, Tsushima T and Sakuma N: Effect of
somatostatin and its analogue on proliferation of human epidermoid
carcinoma cells in vitro. Biochem Biophys Res Commun. 191:302–307.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Burbach J and Wiegant V: Neuropeptides:
basics and perspectives. de Wied D: Elsevier; Amsterdam: pp.
45–103. 1990
|
|
167
|
Thody AJ, Ridley K, Penny RJ, Chalmers R,
Fisher C and Shuster S: MSH peptides are present in mammalian skin.
Peptides. 4:813–816. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Schauer E, Trautinger F, Köck A, Schwarz
A, Bhardwaj R, Simon M, Ansel JC, Schwarz T and Luger TA:
Proopiomelanocortin-derived peptides are synthesized and released
by human keratinocytes. J Clin Invest. 93:2258–2262. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Slominski A and Mihm MC: Potential
mechanism of skin response to stress. Int J Dermatol. 35:849–851.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Slominski A, Wortsman J, Luger T, Paus R
and Solomon S: Corticotropin releasing hormone and
proopiomelanocortin involvement in the cutaneous response to
stress. Physiol Rev. 80:979–1020. 2000.PubMed/NCBI
|
|
171
|
Slominski AT, Botchkarev V, Choudhry M,
Fazal N, Fechner K, Furkert J, Krause E, Roloff B, Sayeed M, Wei E,
et al: Cutaneous expression of CRH and CRH-R. Is there a ‘skin
stress response system?’. Ann N Y Acad Sci. 885:287–311. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Slominski A, Zbytek B, Pisarchik A,
Slominski RM, Zmijewski MA and Wortsman J: CRH functions as a
growth factor/cytokine in the skin. J Cell Physiol. 206:780–791.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Slominski A, Wortsman J, Pisarchik A,
Zbytek B, Linton EA, Mazurkiewicz JE and Wei ET: Cutaneous
expression of corticotropin-releasing hormone (CRH), urocortin, and
CRH receptors. FASEB J. 15:1678–1693. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Slominski A, Pisarchik A, Tobin DJ,
Mazurkiewicz JE and Wortsman J: Differential expression of a
cutaneous corticotropin-releasing hormone system. Endocrinology.
145:941–950. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Slominski A, Roloff B, Curry J, Dahiya M,
Szczesniewski A and Wortsman J: The skin produces urocortin. J Clin
Endocrinol Metab. 85:815–823. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Slominski A, Wortsman J, Mazurkiewicz JE,
Matsuoka L, Dietrich J, Lawrence K, Gorbani A and Paus R: Detection
of proopiomelanocortin-derived antigens in normal and pathologic
human skin. J Lab Clin Med. 122:658–666. 1993.PubMed/NCBI
|
|
177
|
Slominski A, Heasley D, Mazurkiewicz JE,
Ermak G, Baker J and Carlson JA: Expression of proopiomelanocortin
(POMC)-derived melanocyte-stimulating hormone (MSH) and
adrenocorticotropic hormone (ACTH) peptides in skin of basal cell
carcinoma patients. Hum Pathol. 30:208–215. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
178
|
Slominski A: Identification of
beta-endorphin, alpha-MSH and ACTH peptides in cultured human
melanocytes, melanoma and squamous cell carcinoma cells by RP-HPLC.
Exp Dermatol. 7:213–216. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
179
|
Sato H, Nagashima Y, Chrousos GP,
Ichihashi M and Funasak Y: The expression of
corticotropin-releasing hormone in melanoma. Pigment Cell Res.
15:98–103. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
180
|
Slominski A and Pawelek J: Animals under
the sun: Effects of ultraviolet radiation on mammalian skin. Clin
Dermatol. 16:503–515. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
181
|
Scholzen TE, Brzoska T, Kalden D-H,
O'Reilly F, Armstrong CA, Luger TA and Ansel JC: Effect of
ultraviolet light on the release of neuropeptides and
neuroendocrine hormones in the skin: Mediators of photodermatitis
and cutaneous inflammation. J Investig Dermatol Symp Proc. 4:55–60.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
182
|
Huang CM, Elmets CA, van Kampen KR,
Desilva TS, Barnes S, Kim H and Tang DC: Prospective highlights of
functional skin proteomics. Mass Spectrom Rev. 24:647–660. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
183
|
Mitsuma T, Matsumoto Y and Tomita Y:
Corticotropin releasing hormone stimulates proliferation of
keratinocytes. Life Sci. 69:1991–1998. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
184
|
Brown SL and Blalock JE: Neuroendocrine
Immune InteractionsImmunophysiology: the Rrole of cells
andcytokines in immunity and inflammation. Shevach JJOEM: Oxford
University Press; Oxford: pp. 306–319. 1990
|
|
185
|
Kim MH, Cho D, Kim HJ, Chong SJ, Lee KH,
Yu DS, Park CJ, Lee JY, Cho BK and Park HJ: Investigation of the
corticotropin-releasing hormone-proopiomelanocortin axis in various
skin tumours. Br J Dermatol. 155:910–915. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
186
|
Luger TA, Schauer E, Trautinger F,
Krutmann J, Ansel J, Schwarz A and Schwarz T: Production of
immunosuppressing melanotropins by human keratinocytes. Ann N Y
Acad Sci. 680:(1 The Melanotro). 567–570. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
187
|
Arbiser JL, Karalis K, Viswanathan A,
Koike C, Anand-Apte B, Flynn E, Zetter B and Majzoub JA:
Corticotropin-releasing hormone stimulates angiogenesis and
epithelial tumor growth in the skin. J Invest Dermatol.
113:838–842. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
188
|
Chakraborty AK, Funasaka Y, Slominski A,
Ermak G, Hwang J, Pawelek JM and Ichihashi M: Production and
release of proopiomelanocortin (POMC) derived peptides by human
melanocytes and keratinocytes in culture: Regulation by ultraviolet
B. Biochim Biophys Acta. 1313:130–138. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
189
|
Ferjan I and Lipnik-Štangelj M: Chronic
pain treatment: The influence of tricyclic antidepressants on
serotonin release and uptake in mast cells. Mediators Inflamm.
2013:3404732013. View Article : Google Scholar : PubMed/NCBI
|
|
190
|
Ton BH, Chen Q, Gaina G, Tucureanu C,
Georgescu A, Strungaru C, Flonta ML, Sah D and Ristoiu V:
Activation profile of dorsal root ganglia Iba-1 (+) macrophages
varies with the type of lesion in rats. Acta Histochem.
115:840–850. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
191
|
Hart PH, Grimbaldeston MA, Swift GJ,
Jaksic A, Noonan FP and Finlay-Jones JJ: Dermal mast cells
determine susceptibility to ultraviolet B-induced systemic
suppression of contact hypersensitivity responses in mice. J Exp
Med. 187:2045–2053. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
192
|
Kligman LH and Murphy GF: Ultraviolet B
radiation increases hairless mouse mast cells in a dose-dependent
manner and alters distribution of UV-induced mast cell growth
factor. Photochem Photobiol. 63:123–127. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
193
|
Byrne SN, Limón-Flores AY and Ullrich SE:
Mast cell migration from the skin to the draining lymph nodes upon
ultraviolet irradiation represents a key step in the induction of
immune suppression. J Immunol. 180:4648–4655. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
194
|
Maltby S, Khazaie K and McNagny KM: Mast
cells in tumor growth: Angiogenesis, tissue remodelling and
immune-modulation. Biochim Biophys Acta. 1796:19–26.
2009.PubMed/NCBI
|
|
195
|
Ch'ng S, Wallis RA, Yuan L, Davis PF and
Tan ST: Mast cells and cutaneous malignancies. Mod Pathol.
19:149–159. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
196
|
Grimbaldeston MA, Skov L, Finlay-Jones JJ
and Hart PH: Increased dermal mast cell prevalence and
susceptibility to development of basal cell carcinoma in humans.
Methods. 28:90–96. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
197
|
Humphreys TR, Monteiro MR and Murphy GF:
Mast cells and dendritic cells in basal cell carcinoma stroma.
Dermatol Surg. 26:200–203; discussion 203–204. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
198
|
Hart PH, Grimbaldeston MA, Swift GJ,
Hosszu EK and Finlay-Jones JJ: A critical role for dermal mast
cells in cis-urocanic acid-induced systemic suppression of contact
hypersensitivity responses in mice. Photochem Photobiol.
70:807–812. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
199
|
Garssen J, Buckley TL and Van Loveren H: A
role for neuropeptides in UVB-induced systemic immunosuppression.
Photochem Photobiol. 68:205–210. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
200
|
Wille JJ, Kydonieus AF and Murphy GF:
cis-urocanic acid induces mast cell degranulation and release of
preformed TNF-alpha: A possible mechanism linking UVB and
cis-urocanic acid to immunosuppression of contact hypersensitivity.
Skin Pharmacol Appl Skin Physiol. 12:18–27. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
201
|
Khalil Z, Townley SL, Grimbaldeston MA,
Finlay-Jones JJ and Hart PH: cis-Urocanic acid stimulates
neuropeptide release from peripheral sensory nerves. J Invest
Dermatol. 117:886–891. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
202
|
Neagu M, Constantin C and Longo C:
Chemokines in the melanoma metastasis biomarkers portrait. J
Immunoassay Immunochem. 36:559–566. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
203
|
Honeyman JF: Psychoneuroimmunology and the
skin. Acta Derm Venereol. 96:38–46. 2016.PubMed/NCBI
|
|
204
|
Ribatti D and Crivellato E: Mast cells,
angiogenesis, and tumour growth. Biochim Biophys Acta. 1822:2–8.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
205
|
Kanda N and Watanabe S: Histamine enhances
the production of nerve growth factor in human keratinocytes. J
Invest Dermatol. 121:570–577. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
206
|
Hart PH, Grimbaldeston MA and Finlay-Jones
JJ: Sunlight, immunosuppression and skin cancer: Role of histamine
and mast cells. Clin Exp Pharmacol Physiol. 28:1–8. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
207
|
Harizi H, Juzan M, Pitard V, Moreau JF and
Gualde N: Cyclooxygenase-2-issued prostaglandin e(2) enhances the
production of endogenous IL-10, which down-regulates dendritic cell
functions. J Immunol. 168:2255–2263. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
208
|
Schwarz A, Ständer S, Berneburg M, Böhm M,
Kulms D, van Steeg H, Grosse-Heitmeyer K, Krutmann J and Schwarz T:
Interleukin-12 suppresses ultraviolet radiation-induced apoptosis
by inducing DNA repair. Nat Cell Biol. 4:26–31. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
209
|
Varricchi G, Galdiero MR and Marone G,
Granata F, Borriello F and Marone G: Controversial role of mast
cells in skin cancers. Exp Dermatol. 26:11–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
210
|
Sawatsubashi M, Yamada T, Fukushima N,
Mizokami H, Tokunaga O and Shin T: Association of vascular
endothelial growth factor and mast cells with angiogenesis in
laryngeal squamous cell carcinoma. Virchows Arch. 436:243–248.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
211
|
Diaconu NC, Kaminska R, Naukkarinen A,
Harvima RJ and Harvima IT: The increase in tryptase- and
chymase-positive mast cells is associated with partial inactivation
of chymase and increase in protease inhibitors in basal cell
carcinoma. J Eur Acad Dermatol Venereol. 21:908–915. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
212
|
Hart PH, Townley SL, Grimbaldeston MA,
Khalil Z and Finlay-Jones JJ: Mast cells, neuropeptides, histamine,
and prostaglandins in UV-induced systemic immunosuppression.
Methods. 28:79–89. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
213
|
Townley SL, Grimbaldeston MA, Ferguson I,
Rush RA, Zhang SH, Zhou XF, Conner JM, Finlay-Jones JJ and Hart PH:
Nerve growth factor, neuropeptides, and mast cells in
ultraviolet-B-induced systemic suppression of contact
hypersensitivity responses in mice. J Invest Dermatol. 118:396–401.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
214
|
Singh LK, Pang X, Alexacos N, Letourneau R
and Theoharides TC: Acute immobilization stress triggers skin mast
cell degranulation via corticotropin releasing hormone,
neurotensin, and substance P: A link to neurogenic skin disorders.
Brain Behav Immun. 13:225–239. 1999. View Article : Google Scholar : PubMed/NCBI
|