Open Access

HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway

  • Authors:
    • Bo Kou
    • Wei Liu
    • Xiaoshuang Tang
    • Qingshan Kou
  • View Affiliations

  • Published online on: November 10, 2017     https://doi.org/10.3892/or.2017.6091
  • Pages: 101-108
  • Copyright: © Kou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

High-mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, has been reported to correlate with cancer progression. However, there is no report concerning the correlation between HMGA2 and metastasis in renal cell carcinoma. In the present study, we found that HMGA2 was highly expressed in five renal cell carcinoma cell lines compared with that in the normal renal tubular epithelial HK2 cell line. Additionally, HMGA2 facilitated cell migration and invasion of renal cell carcinoma cells, as evidenced by wound healing and Transwell assays. Subsequently, our results revealed that the E‑cadherin level was upregulated, while N‑cadherin, Twist1 and Twist2 expression were downregulated in HMGA2-depleted ACHN cells. In contrast, overexpression of HMGA2 in 786‑O cells enhanced epithelial-mesenchymal transition (EMT). In addition, analysis of the database Cancer Browser further validated the positive correlation between HGMA2 and Twist1 or Twist2 in renal cell carcinoma. Meanwhile, Kaplan-Meier analysis indicated that low HMGA2 expression was closely associated with an increased overall survival in renal cell carcinoma patients. To confirm the underlying mechanism of HMGA2-regulated EMT, our results revealed that silencing of HMGA2 downregulated the mRNA and protein levels of TGF-β and Smad2, while HMGA2 overexpression had the opposite effect. Furthermore, TGF-β overexpression could partially reverse the anti-metastatic effect and mesenchymal-epithelial transition (MET) by HMGA2 loss, while TGF-β deficiency impeded the pro‑metastatic phenotype and high expression of EMT markers induced by HMGA2 overexpression. In summary, our results demonstrated that HMGA2 facilitated a metastatic phenotype and the EMT process in renal cell carcinoma cells in vitro through a TGF-β-dependent pathway. In addition, these data strongly suggest that HGMA2 may serve as a potential therapeutic target and prognostic biomarker against renal cell carcinoma in the future.
View Figures
View References

Related Articles

Journal Cover

January-2018
Volume 39 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Kou B, Liu W, Tang X and Kou Q: HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway. Oncol Rep 39: 101-108, 2018
APA
Kou, B., Liu, W., Tang, X., & Kou, Q. (2018). HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway. Oncology Reports, 39, 101-108. https://doi.org/10.3892/or.2017.6091
MLA
Kou, B., Liu, W., Tang, X., Kou, Q."HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway". Oncology Reports 39.1 (2018): 101-108.
Chicago
Kou, B., Liu, W., Tang, X., Kou, Q."HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway". Oncology Reports 39, no. 1 (2018): 101-108. https://doi.org/10.3892/or.2017.6091