|
1
|
Qasim W and Thrasher AJ: Progress and
prospects for engineered T cell therapies. Br J Haematol.
166:818–829. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ribas A, Butterfield LH, Glaspy JA and
Economou JS: Current developments in cancer vaccines and cellular
immunotherapy. J Clin Oncol. 21:2415–2432. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Aly HA: Cancer therapy and vaccination. J
Immunol Methods. 382:1–23. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lollini PL, Cavallo F, Nanni P and Forni
G: Vaccines for tumour prevention. Nat Rev Cancer. 6:204–216. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Smith DM, Simon JK and Baker JR Jr:
Applications of nanotechnology for immunology. Nat Rev Immunol.
13:592–605. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pashine A, Valiante NM and Ulmer JB:
Targeting the innate immune response with improved vaccine
adjuvants. Nat Med. 11 Suppl:S63–S68. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Schlosser E, Mueller M, Fischer S, Basta
S, Busch DH, Gander B and Groettrup M: TLR ligands and antigen need
to be coencapsulated into the same biodegradable microsphere for
the generation of potent cytotoxic T lymphocyte responses. Vaccine.
26:1626–1637. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
De Temmerman ML, Rejman J, Demeester J,
Irvine DJ, Gander B and De Smedt SC: Particulate vaccines: On the
quest for optimal delivery and immune response. Drug Discov Today.
16:569–582. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li
AV, Huang B, Van Egeren DS, Park C and Irvine DJ: Structure-based
programming of lymph-node targeting in molecular vaccines. Nature.
507:519–522. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Palucka K and Banchereau J:
Dendritic-cell-based therapeutic cancer vaccines. Immunity.
39:38–48. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Scheerlinck JP and Greenwood DL:
Virus-sized vaccine delivery systems. Drug Discov Today.
13:882–887. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Goldberg MS: Immunoengineering: How
nanotechnology can enhance cancer immunotherapy. Cell. 161:201–204.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Song YC, Cheng HY, Leng CH, Chiang SK, Lin
CW, Chong P, Huang MH and Liu SJ: A novel emulsion-type adjuvant
containing CpG oligodeoxynucleotides enhances CD8+
T-cell-mediated anti-tumor immunity. J Control Release.
173:158–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fischer NO, Rasley A, Corzett M, Hwang MH,
Hoeprich PD and Blanchette CD: Colocalized delivery of adjuvant and
antigen using nanolipoprotein particles enhances the immune
response to recombinant antigens. J Am Chem Soc. 135:2044–2047.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Standley SM, Mende I, Goh SL, Kwon YJ,
Beaudette TT, Engleman EG and Fréchet JM: Incorporation of CpG
oligonucleotide ligand into protein-loaded particle vaccines
promotes antigen-specific CD8 T-cell immunity. Bioconjug Chem.
18:77–83. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fox CB, Sivananthan SJ, Duthie MS, Vergara
J, Guderian JA, Moon E, Coblentz D, Reed SG and Carter D: A
nanoliposome delivery system to synergistically trigger TLR4 AND
TLR7. J Nanobiotechnology. 12:172014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zinkernagel RM, Ehl S, Aichele P, Oehen S,
Kündig T and Hengartner H: Antigen localisation regulates immune
responses in a dose- and time-dependent fashion: A geographical
view of immune reactivity. Immunol Rev. 156:199–209. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Reddy ST, Swartz MA and Hubbell JA:
Targeting dendritic cells with biomaterials: Developing the next
generation of vaccines. Trends Immunol. 27:573–579. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cui Z, Han SJ and Huang L: Coating of
mannan on LPD particles containing HPV E7 peptide significantly
enhances immunity against HPV-positive tumor. Pharm Res.
21:1018–1025. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao
Y, Kong M, Qi Y, Tan S and Zhang Z: Erythrocyte membrane-enveloped
polymeric nanoparticles as nanovaccine for induction of antitumor
immunity against melanoma. ACS Nano. 9:6918–6933. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Perez-Diez A, Joncker NT, Choi K, Chan WF,
Anderson CC, Lantz O and Matzinger P: CD4 cells can be more
efficient at tumor rejection than CD8 cells. Blood. 109:5346–5354.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Delamarre L, Pack M, Chang H, Mellman I
and Trombetta ES: Differential lysosomal proteolysis in
antigen-presenting cells determines antigen fate. Science.
307:1630–1634. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shen H, Ackerman AL, Cody V, Giodini A,
Hinson ER, Cresswell P, Edelson RL, Saltzman WM and Hanlon DJ:
Enhanced and prolonged cross-presentation following endosomal
escape of exogenous antigens encapsulated in biodegradable
nanoparticles. Immunology. 117:78–88. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Saluja SS, Hanlon DJ, Sharp FA, Hong E,
Khalil D, Robinson E, Tigelaar R, Fahmy TM and Edelson RL:
Targeting human dendritic cells via DEC-205 using PLGA
nanoparticles leads to enhanced cross-presentation of a
melanoma-associated antigen. Int J Nanomedicine. 9:5231–5246.
2014.PubMed/NCBI
|
|
25
|
Yuba E, Kono Y, Harada A, Yokoyama S, Arai
M, Kubo K and Kono K: The application of pH-sensitive
polymer-lipids to antigen delivery for cancer immunotherapy.
Biomaterials. 34:5711–5721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Joyce JA: Therapeutic targeting of the
tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mohla S: Tumor microenvironment. J Cell
Biochem. 101:801–804. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Danhier F, Feron O and Préat V: To exploit
the tumor microenvironment: Passive and active tumor targeting of
nanocarriers for anti-cancer drug delivery. J Control Release.
148:135–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Martinez FO, Sica A, Mantovani A and
Locati M: Macrophage activation and polarization. Front Biosci.
13:453–461. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mantovani A, Sozzani S, Locati M, Allavena
P and Sica A: Macrophage polarization: Tumor-associated macrophages
as a paradigm for polarized M2 mononuclear phagocytes. Trends
Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gordon S and Martinez FO: Alternative
activation of macrophages: Mechanism and functions. Immunity.
32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Murdoch C, Giannoudis A and Lewis CE:
Mechanisms regulating the recruitment of macrophages into hypoxic
areas of tumors and other ischemic tissues. Blood. 104:2224–2234.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zanganeh S, Hutter G, Spitler R, Lenkov O,
Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M,
et al: Iron oxide nanoparticles inhibit tumour growth by inducing
pro-inflammatory macrophage polarization in tumour tissues. Nat
Nanotechnol. 11:986–994. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Connolly DT, Heuvelman DM, Nelson R,
Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM and
Feder J: Tumor vascular permeability factor stimulates endothelial
cell growth and angiogenesis. J Clin Invest. 84:1470–1478. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Meng H, Xing G, Sun B, Zhao F, Lei H, Li
W, Song Y, Chen Z, Yuan H, Wang X, et al: Potent angiogenesis
inhibition by the particulate form of fullerene derivatives. ACS
Nano. 4:2773–2783. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Meng H, Xing G, Blanco E, Song Y, Zhao L,
Sun B, Li X, Wang PC, Korotcov A, Li W, et al: Gadolinium
metallofullerenol nanoparticles inhibit cancer metastasis through
matrix metalloproteinase inhibition: Imprisoning instead of
poisoning cancer cells. Nanomedicine (Lond). 8:136–146. 2012.
View Article : Google Scholar
|
|
37
|
Guo L, Yan DD, Yang D, Li Y, Wang X,
Zalewski O, Yan B and Lu W: Combinatorial photothermal and immuno
cancer therapy using chitosan-coated hollow copper sulfide
nanoparticles. ACS Nano. 8:5670–5681. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Duan X, Chan C, Guo N, Han W, Weichselbaum
RR and Lin W: Photodynamic therapy mediated by nontoxic core-shell
nanoparticles synergizes with immune checkpoint blockade to elicit
antitumor immunity and antimetastatic effect on breast cancer. J Am
Chem Soc. 138:16686–16695. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li
Y and Liu Z: Near-infrared dye bound albumin with separated imaging
and therapy wavelength channels for imaging-guided photothermal
therapy. Biomaterials. 35:8206–8214. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Berger M, Kreutz FT, Horst JL, Baldi AC
and Koff WJ: Phase I study with an autologous tumor cell vaccine
for locally advanced or metastatic prostate cancer. J Pharm Pharm
Sci. 10:144–152. 2007.PubMed/NCBI
|
|
41
|
Guo C, Manjili MH, Subjeck JR, Sarkar D,
Fisher PB and Wang XY: Therapeutic cancer vaccines: Past, present,
and future. Adv Cancer Res. 119:421–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fields RC, Shimizu K and Mulé JJ: Murine
dendritic cells pulsed with whole tumor lysates mediate potent
antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci
USA. 95:pp. 9482–9487. 1998; View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fang RH, Hu CM, Luk BT, Gao W, Copp JA,
Tai Y, O'Connor DE and Zhang L: Cancer cell membrane-coated
nanoparticles for anticancer vaccination and drug delivery. Nano
Lett. 14:2181–2188. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu SY, Wei W, Yue H, Ni DZ, Yue ZG, Wang
S, Fu Q, Wang YQ, Ma GH and Su ZG: Nanoparticles-based
multi-adjuvant whole cell tumor vaccine for cancer immunotherapy.
Biomaterials. 34:8291–8300. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ueda Y, Itoh T, Fuji N, Harada S, Fujiki
H, Shimizu K, Shiozaki A, Iwamoto A, Shimizu T, Mazda O, et al:
Successful induction of clinically competent dendritic cells from
granulocyte colony-stimulating factor-mobilized monocytes for
cancer vaccine therapy. Cancer Immunol Immunother. 56:381–389.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Han JA, Kang YJ, Shin C, Ra JS, Shin HH,
Hong SY, Do Y and Kang S: Ferritin protein cage nanoparticles as
versatile antigen delivery nanoplatforms for dendritic cell
(DC)-based vaccine development. Nanomedicine (Lond). 10:561–569.
2014. View Article : Google Scholar
|
|
47
|
Dobrovolskaia MA and McNeil SE:
Immunological properties of engineered nanomaterials. Nat
Nanotechnol. 2:469–478. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zeng B, Liao AJ, Lu FG, Fang WY and Wang
J: Inhibition of the growth of hepatocarcinoma xenograft in Balb/c
mice induced by dendritic cells immunized with AFP cDNA fragement.
Zhonghua Zhong Liu Za Zhi. 32:98–102. 2010.(In Chinese). PubMed/NCBI
|
|
49
|
Matsuo K, Ishii Y, Matsuo K, Yoshinaga T,
Akashi M, Mukai Y, Yoshioka Y, Okada N and Nakagawa S: The utility
of poly(γ-glutamic acid) nanoparticles as antigen delivery carriers
in dendritic cell-based cancer immunotherapy. Biol Pharm Bull.
33:2003–2007. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang J, Zhang Q, Li K, Yin H and Zheng JN:
Composite peptide-based vaccines for cancer immunotherapy (Review).
Int J Mol Med. 35:17–23. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cruz LJ, Rueda F, Cordobilla B, Simón L,
Hosta L, Albericio F and Domingo JC: Targeting nanosystems to human
DCs via Fc receptor as an effective strategy to deliver antigen for
immunotherapy. Mol Pharm. 8:104–116. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo
Y, Song Q, Li G, Tan S and Zhang Z: Lipid-enveloped zinc phosphate
hybrid nanoparticles for codelivery of H-2K(b) and
H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to
induce antitumor immunity against melanoma. J Control Release.
228:26–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Senovilla L, Vacchelli E, Garcia P,
Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G and
Galluzzi L: Trial watch: DNA vaccines for cancer therapy.
OncoImmunology. 2:e238032013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong
M, Chen X, Xiang R and Tan X: Alginic acid-coated chitosan
nanoparticles loaded with legumain DNA vaccine: Effect against
breast cancer in mice. PLoS One. 8:e601902013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li J, Pei H, Zhu B, Liang L, Wei M, He Y,
Chen N, Li D, Huang Q and Fan C: Self-assembled multivalent DNA
nanostructures for noninvasive intracellular delivery of
immunostimulatory CpG oligonucleotides. ACS Nano. 5:8783–8789.
2011. View Article : Google Scholar : PubMed/NCBI
|