|
1
|
Hoory T, Monie A, Gravitt P and Wu TC:
Molecular epidemiology of human papillomavirus. J Formos Med Assoc.
107:198–217. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Muñoz N, Bosch FX, Castellsagué X, Díaz M,
de Sanjose S, Hammouda D, Shah KV and Meijer CJ: Against which
human papillomavirus types shall we vaccinate and screen? The
international perspective. Int J Cancer. 111:278–285. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Doorbar J, Quint W, Banks L, Bravo IG,
Stoler M, Broker TR and Stanley MA: The biology and life-cycle of
human papillomaviruses. Vaccine. 30 Suppl 5:F55–F70. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Stanley MA: Epithelial cell responses to
infection with human papillomavirus. Clin Microbiol Rev.
25:215–222. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
McBride AA: Replication and partitioning
of papillomavirus genomes. Adv Virus Res. 72:155–205. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dueñas-González A and Campbell S: Global
strategies for the treatment of early-stage and advanced cervical
cancer. Curr Opin Obstet Gynecol. 28:11–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Schiffman M, Doorbar J, Wentzensen N, de
Sanjosé S, Fakhry C, Monk BJ, Stanley MA and Franceschi S:
Carcinogenic human papillomavirus infection. Nat Rev Dis Primers.
2:160862016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Joyce JG, Tung JS, Przysiecki CT, Cook JC,
Lehman ED, Sands JA, Jansen KU and Keller PM: The L1 major capsid
protein of human papillomavirus type 11 recombinant virus-like
particles interacts with heparin and cell-surface
glycosaminoglycans on human keratinocytes. J Biol Chem.
274:5810–5822. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Evander M, Frazer IH, Payne E, Qi YM,
Hengst K and McMillan NA: Identification of the alpha6 integrin as
a candidate receptor for papillomaviruses. J Virol. 71:2449–2456.
1997.PubMed/NCBI
|
|
10
|
Cardone G, Moyer AL, Cheng N, Thompson CD,
Dvoretzky I, Lowy DR, Schiller JT, Steven AC, Buck CB and Trus BL:
Maturation of the human papillomavirus 16 capsid. MBio.
5:e01104–e01114. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ryndock EJ, Conway MJ, Alam S, Gul S,
Murad S, Christensen ND and Meyers C: Roles for human
papillomavirus type 16 l1 cysteine residues 161, 229, and 379 in
genome encapsidation and capsid stability. PLoS One. 9:e994882014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Joshi H, Cheluvaraja S, Somogyi E, Brown
DR and Ortoleva P: A molecular dynamics study of loop fluctuation
in human papillomavirus type 16 virus-like particles: A possible
indicator of immunogenicity. Vaccine. 29:9423–9430. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bishop B, Dasgupta J, Klein M, Garcea RL,
Christensen ND, Zhao R and Chen XS: Crystal structures of four
types of human papillomavirus L1 capsid proteins: Understanding the
specificity of neutralizing monoclonal antibodies. J Biol Chem.
282:31803–31811. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mistry N, Wibom C and Evander M: Cutaneous
and mucosal human papillomaviruses differ in net surface charge,
potential impact on tropism. Virol J. 5:1182008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Buck CB, Cheng N, Thompson CD, Lowy DR,
Steven AC, Schiller JT and Trus BL: Arrangement of L2 within the
papillomavirus capsid. J Virol. 82:5190–5197. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schneider MA, Spoden GA, Florin L and
Lambert C: Identification of the dynein light chains required for
human papillomavirus infection. Cell Microbiol. 13:32–46. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Darshan MS, Lucchi J, Harding E and
Moroianu J: The l2 minor capsid protein of human papillomavirus
type 16 interacts with a network of nuclear import receptors. J
Virol. 78:12179–12188. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lowe J, Panda D, Rose S, Jensen T, Hughes
WA, Tso FY and Angeletti PC: Evolutionary and structural analyses
of alpha-papillomavirus capsid proteins yields novel insights into
L2 structure and interaction with L1. Virol J. 5:1502008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Raff AB, Woodham AW, Raff LM, Skeate JG,
Yan L, Da Silva DM, Schelhaas M and Kast WM: The evolving field of
human papillomavirus receptor research: A review of binding and
entry. J Virol. 87:6062–6072. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Woodham AW, Da Silva DM, Skeate JG, Raff
AB, Ambroso MR, Brand HE, Isas JM, Langen R and Kast WM: The
S100A10 subunit of the annexin A2 heterotetramer facilitates
L2-mediated human papillomavirus infection. PLoS One. 7:e435192012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ishii Y, Nakahara T, Kataoka M,
Kusumoto-Matsuo R, Mori S, Takeuchi T and Kukimoto I:
Identification of TRAPPC8 as a host factor required for human
papillomavirus cell entry. PLoS One. 8:e802972013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lehoux M, Fradet-Turcotte A, Lussier-Price
M, Omichinski JG and Archambault J: Inhibition of human
papillomavirus DNA replication by an E1-derived p80/UAF1-binding
peptide. J Virol. 86:3486–3500. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peter M: Howley DRL: Papillomaviruses.
Journal II. 1–2354. 2007.
|
|
24
|
Morin G, Fradet-Turcotte A, Di Lello P,
Bergeron-Labrecque F, Omichinski JG and Archambault J: A conserved
amphipathic helix in the N-terminal regulatory region of the
papillomavirus E1 helicase is required for efficient viral DNA
replication. J Virol. 85:5287–5300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Auster AS and Joshua-Tor L: The
DNA-binding domain of human papillomavirus type 18 E1. Crystal
structure, dimerization, and DNA binding. J Biol Chem.
279:3733–3742. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bellanger S, Tan CL, Xue YZ, Teissier S
and Thierry F: Tumor suppressor or oncogene? A critical role of the
human papillomavirus (HPV) E2 protein in cervical cancer
progression. Am J Cancer Res. 1:373–389. 2011.PubMed/NCBI
|
|
27
|
Dell G, Wilkinson KW, Tranter R, Parish J,
Leo Brady R and Gaston K: Comparison of the structure and
DNA-binding properties of the E2 proteins from an oncogenic and a
non-oncogenic human papillomavirus. J Mol Biol. 334:979–991. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Y, Coulombe R, Cameron DR, Thauvette
L, Massariol MJ, Amon LM, Fink D, Titolo S, Welchner E, Yoakim C,
et al: Crystal structure of the E2 transactivation domain of human
papillomavirus type 11 bound to a protein interaction inhibitor. J
Biol Chem. 279:6976–6985. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Brown C, Campos-León K, Strickland M,
Williams C, Fairweather V, Brady RL, Crump MP and Gaston K: Protein
flexibility directs DNA recognition by the papillomavirus E2
proteins. Nucleic Acids Res. 39:2969–2980. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nakahara T, Peh WL, Doorbar J, Lee D and
Lambert PF: Human papillomavirus type 16 E1circumflexE4 contributes
to multiple facets of the papillomavirus life cycle. J Virol.
79:13150–13165. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Doorbar J: The E4 protein; structure,
function and patterns of expression. Virology. 445:80–98. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Davy C, McIntosh P, Jackson DJ, Sorathia
R, Miell M, Wang Q, Khan J, Soneji Y and Doorbar J: A novel
interaction between the human papillomavirus type 16 E2 and E1^E4
proteins leads to stabilization of E2. Virology. 394:266–275. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Davy CE, Jackson DJ, Wang Q, Raj K,
Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JB and
Doorbar J: Identification of a G2 arrest domain in the
E1 wedge E4 protein of human papillomavirus type 16. J Virol.
76:9806–9818. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Roberts S, Ashmole I, Rookes SM and
Gallimore PH: Mutational analysis of the human papillomavirus type
16 E1^E4 protein shows that the C terminus is dispensable for
keratin cytoskeleton association but is involved in inducing
disruption of the keratin filaments. J Virol. 71:3554–3562.
1997.PubMed/NCBI
|
|
35
|
McIntosh PB, Laskey P, Sullivan K, Davy C,
Wang Q, Jackson DJ, Griffin HM and Doorbar J: E1^E4-mediated
keratin phosphorylation and ubiquitylation: A mechanism for keratin
depletion in HPV16-infected epithelium. J Cell Sci. 123:2810–2822.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang DH, Wildeman AG and Sharom FJ:
Overexpression, purification, and structural analysis of the
hydrophobic E5 protein from human papillomavirus type 16. Protein
Expr Purif. 30:1–10. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Venuti A, Paolini F, Nasir L, Corteggio A,
Roperto S, Campo MS and Borzacchiello G: Papillomavirus E5: The
smallest oncoprotein with many functions. Mol Cancer. 10:1402011.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ashrafi GH, Haghshenas M, Marchetti B and
Campo MS: E5 protein of human papillomavirus 16 downregulates HLA
class I and interacts with the heavy chain via its first
hydrophobic domain. Int J Cancer. 119:2105–2112. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Disbrow GL, Hanover JA and Schlegel R:
Endoplasmic reticulum-localized human papillomavirus type 16 E5
protein alters endosomal pH but not trans-Golgi pH. J Virol.
79:5839–5846. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Stoler MH, Rhodes CR, Whitbeck A, Wolinsky
SM, Chow LT and Broker TR: Human papillomavirus type 16 and 18 gene
expression in cervical neoplasias. Hum Pathol. 23:117–128. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kabsch K and Alonso A: The human
papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated
apoptosis in HaCaT cells by different mechanisms. J Virol.
76:12162–12172. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Muto V, Stellacci E, Lamberti AG, Perrotti
E, Carrabba A, Matera G, Sgarbanti M, Battistini A, Liberto MC and
Focà A: Human papillomavirus type 16 E5 protein induces expression
of beta interferon through interferon regulatory factor 1 in human
keratinocytes. J Virol. 85:5070–5080. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Suprynowicz FA, Disbrow GL, Simic V and
Schlegel R: Are transforming properties of the bovine
papillomavirus E5 protein shared by E5 from high-risk human
papillomavirus type 16? Virology. 332:102–113. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Krawczyk E, Suprynowicz FA, Liu X, Dai Y,
Hartmann DP, Hanover J and Schlegel R: Koilocytosis: A cooperative
interaction between the human papillomavirus E5 and E6
oncoproteins. Am J Pathol. 173:682–688. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Krawczyk E, Suprynowicz FA, Hebert JD,
Kamonjoh CM and Schlegel R: The human papillomavirus type 16 E5
oncoprotein translocates calpactin I to the perinuclear region. J
Virol. 85:10968–10975. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kotnik Halavaty K, Regan J, Mehta K and
Laimins L: Human papillomavirus E5 oncoproteins bind the A4
endoplasmic reticulum protein to regulate proliferative ability
upon differentiation. Virology 452–453. 1–230. 2014.
|
|
47
|
Barbaresi S, Cortese MS, Quinn J, Ashrafi
GH, Graham SV and Campo MS: Effects of human papillomavirus type 16
E5 deletion mutants on epithelial morphology: Functional
characterization of each transmembrane domain. J Gen Virol.
91:521–530. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Nominé Y, Charbonnier S, Ristriani T,
Stier G, Masson M, Cavusoglu N, Van Dorsselaer A, Weiss E, Kieffer
B and Travé G: Domain substructure of HPV E6 oncoprotein:
Biophysical characterization of the E6 C-terminal DNA-binding
domain. Biochemistry. 42:4909–4917. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zanier K, Ould M'hamed ould Sidi A,
Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, Kieffer B and
Travé G: Solution structure analysis of the HPV16 E6 oncoprotein
reveals a self-association mechanism required for E6-mediated
degradation of p53. Structure. 20:604–617. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu Y, Henry GD, Hegde RS and Baleja JD:
Solution structure of the hDlg/SAP97 PDZ2 domain and its mechanism
of interaction with HPV-18 papillomavirus E6 protein. Biochemistry.
46:10864–10874. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zanier K, Stutz C, Kintscher S, Reinz E,
Sehr P, Bulkescher J, Hoppe-Seyler K, Travé G and Hoppe-Seyler F:
The E6AP binding pocket of the HPV16 E6 oncoprotein provides a
docking site for a small inhibitory peptide unrelated to E6AP,
indicating druggability of E6. PLoS One. 9:e1125142014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Martinez-Zapien D, Ruiz FX, Poirson J,
Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande
Pol S, Podjarny A, et al: Structure of the E6/E6AP/p53 complex
required for HPV-mediated degradation of p53. Nature. 529:541–545.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Manzo-Merino J, Massimi P, Lizano M and
Banks L: The human papillomavirus (HPV) E6 oncoproteins promotes
nuclear localization of active caspase 8. Virology 450–451. 1–152.
2014.
|
|
54
|
Liu S, Tian Y, Greenaway FT and Sun MZ: A
C-terminal hydrophobic, solvent-protected core and a flexible
N-terminus are potentially required for human papillomavirus 18 E7
protein functionality. Biochimie. 92:901–908. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu X, Clements A, Zhao K and Marmorstein
R: Structure of the human Papillomavirus E7 oncoprotein and its
mechanism for inactivation of the retinoblastoma tumor suppressor.
J Biol Chem. 281:578–586. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chemes LB, Camporeale G, Sánchez IE, de
Prat-Gay G and Alonso LG: Cysteine-rich positions outside the
structural zinc motif of human papillomavirus E7 provide
conformational modulation and suggest functional redox roles.
Biochemistry. 53:1680–1696. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Onder Z and Moroianu J: Nuclear import of
cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic
interactions between its zinc-binding domain and FG nucleoporins.
Virology. 449:150–162. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Calçada EO, Felli IC, Hošek T and
Pierattelli R: The heterogeneous structural behavior of E7 from
HPV16 revealed by NMR spectroscopy. ChemBioChem. 14:1876–1882.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kumar S, Jena L, Sahoo M, Kakde M, Daf S
and Varma AK: In silico docking to explicate interface between
plant-originated inhibitors and E6 oncogenic protein of highly
threatening human papillomavirus 18. Genomics Inform. 13:60–67.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rietz A, Petrov DP, Bartolowits M, DeSmet
M, Davisson VJ and Androphy EJ: Molecular probing of the HPV-16 E6
protein alpha helix binding groove with small molecule inhibitors.
PLoS One. 11:e01498452016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Stutz C, Reinz E, Honegger A, Bulkescher
J, Schweizer J, Zanier K, Travé G, Lohrey C, Hoppe-Seyler K and
Hoppe-Seyler F: Intracellular analysis of the interaction between
the human papillomavirus type 16 E6 oncoprotein and inhibitory
peptides. PLoS One. 10:e01323392015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fera D, Schultz DC, Hodawadekar S,
Reichman M, Donover PS, Melvin J, Troutman S, Kissil JL, Huryn DM
and Marmorstein R: Identification and characterization of small
molecule antagonists of pRb inactivation by viral oncoproteins.
Chem Biol. 19:518–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tian YS, Kawashita N, Arai Y, Okamoto K
and Takagi T: Pharmacophore modeling and molecular docking studies
of potential inhibitors to E6 PBM-PDZ from human papilloma virus
(HPV). Bioinformation. 11:401–406. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yuan CH, Filippova M, Krstenansky JL and
Duerksen-Hughes PJ: Flavonol and imidazole derivatives block HPV16
E6 activities and reactivate apoptotic pathways in HPV+
cells. Cell Death Dis. 7:20602016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Malecka KA, Fera D, Schultz DC,
Hodawadekar S, Reichman M, Donover PS, Murphy ME and Marmorstein R:
Identification and characterization of small molecule human
papillomavirus E6 inhibitors. ACS Chem Biol. 9:1603–1612. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kontostathi G, Zoidakis J, Makridakis M,
Lygirou V, Mermelekas G, Papadopoulos T, Vougas K, Vlamis-Gardikas
A, Drakakis P, Loutradis D, et al: Cervical cancer cell line
secretome analysis highlights the role of transforming growth
factor-beta-induced protein ig-h3, peroxiredoxin-2 and NRF2 on
cervical cancer carcinogenesis. BioMed Res Int. 2017:41807032017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pappa KI, Lygirou V, Kontostathi G,
Zoidakis J, Makridakis M, Vougas K, Daskalakis G, Polyzos A and
Anagnou NP: Proteomic analysis of normal and cancer cervical cell
lines reveals deregulation of cytoskeleton-associated proteins.
Cancer Genomics Proteomics. 14:253–266. 2017. View Article : Google Scholar : PubMed/NCBI
|