|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Seiwert TY and Cohen EE: State-of-the-art
management of locally advanced head and neck cancer. Br J Cancer.
92:1341–1348. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vermorken JB, Remenar E, van Herpen C,
Gorlia T, Mesia R, Degardin M, Stewart JS, Jelic S, Betka J, Preiss
JH, et al: Cisplatin, fluorouracil, and docetaxel in unresectable
head and neck cancer. N Engl J Med. 357:1695–1704. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Douple EB and Richmond RC: A review of
platinum complex biochemistry suggests a rationale for combined
platinum-radiotherapy. Int J Radiat Oncol Biol Phys. 5:1335–1339.
1979. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rockwell S and Kennedy KA: Combination
therapy with radiation and mitomycin C: Preliminary results with
EMT6 tumor cells in vitro and in vivo. Int J Radiat Oncol Biol
Phys. 5:1673–1676. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wennerberg J, Alm P, Biörklund A,
Killander D, Långström E and Tropé C: Cell cycle perturbations in
heterotransplanted squamous-cell carcinoma of the head and neck
after mitomycin C and cisplatin treatment. Int J Cancer.
33:213–222. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gomez-Millan J, Fernández JR and Medina
Carmona JA: Current status of IMRT in head and neck cancer. Rep
Pract Oncol Radiother. 18:371–375. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Prestwich RJ, Öksüz DÇ, Dyker K, Coyle C
and Şen M: Feasibility and efficacy of induction docetaxel,
cisplatin, and 5-fluorouracil chemotherapy combined with cisplatin
concurrent chemoradiotherapy for nonmetastatic Stage IV
head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol
Phys. 81:e237–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Miyazaki Y, Shibuya M, Sugawara H,
Kawaguchi O and Hirsoe C: Salinomycin, a new polyether antibiotic.
J Antibiot. 27:814–821. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Danforth HD, Ruff MD, Reid WM and Miller
RL: Anticoccidial activity of salinomycin in battery raised broiler
chickens. Poult Sci. 56:926–932. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Naujokat C, Fuchs D and Opelz G:
Salinomycin in cancer: A new mission for an old agent. Mol Med Rep.
3:555–559. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gupta PB, Onder TT, Jiang G, Tao K,
Kuperwasser C, Weinberg RA and Lander ES: Identification of
selective inhibitors of cancer stem cells by high-throughput
screening. Cell. 138:645–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pries R, Wittkopf N, Hasselbacher K and
Wollenberg B: Constitutive expression of the potential stem cell
marker CD44 in permanent HNSCC cell lines. HNO. 56:461–466.
2008.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Boman BM and Wicha MS: Cancer stem cells:
A step toward the cure. J Clin Oncol. 26:2795–2799. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Davis SJ, Divi V, Owen JH, Bradford CR,
Carey TE, Papagerakis S and Prince ME: Metastatic potential of
cancer stem cells in head and neck squamous cell carcinoma. Arch
Otolaryngol Head Neck Surg. 136:1260–1266. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Arafat K, Iratni R, Takahashi T, Parekh K,
Al Dhaheri Y, Adrian TE and Attoub S: Inhibitory effects of
salinomycin on cell survival, colony growth, migration, and
invasion of human non-small cell lung cancer A549 and LNM35:
Involvement of NAG-1. PLoS One. 8:e669312013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Al Dhaheri Y, Attoub S, Arafat K, Abuqamar
S, Eid A, Al Faresi N and Iratni R: Salinomycin induces apoptosis
and senescence in breast cancer: Upregulation of p21,
downregulation of survivin and histone H3 and H4 hyperacetylation.
Biochim Biophys Acta. 1830:3121–3135. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhi QM, Chen XH, Ji J, Zhang JN, Li JF,
Cai Q, Liu BY, Gu QL, Zhu ZG and Yu YY: Salinomycin can effectively
kill ALDHhigh stem-like cells on gastric cancer. Biomed
Pharmacother. 65:509–515. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ
and Carson DA: Salinomycin inhibits Wnt signaling and selectively
induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl
Acad Sci USA. 108:pp. 13253–13257. 2011; View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Scherzed A, Hackenberg S, Froelich K, Rak
K, Ginzkey C, Hagen R, Schendzielorz P and Kleinsasser N: Effects
of salinomycin and CGP37157 on head and neck squamous cell
carcinoma cell lines in vitro. Mol Med Rep. 12:4455–4461. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang F, He L, Dai WQ, Xu YP, Wu D, Lin CL,
Wu SM, Cheng P, Zhang Y, Shen M, et al: Salinomycin inhibits
proliferation and induces apoptosis of human hepatocellular
carcinoma cells in vitro and in vivo. PLoS One. 7:e506382012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu D, Zhang Y, Huang J, Fan Z, Shi F and
Wang S: Salinomycin inhibits proliferation and induces apoptosis of
human nasopharyngeal carcinoma cell in vitro and suppresses tumor
growth in vivo. Biochem Biophys Res Commun. 443:712–717. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kim KY, Yu SN, Lee SY, Chun SS, Choi YL,
Park YM, Song CS, Chatterjee B and Ahn SC: Salinomycin-induced
apoptosis of human prostate cancer cells due to accumulated
reactive oxygen species and mitochondrial membrane depolarization.
Biochem Biophys Res Commun. 413:80–86. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Parajuli B, Lee HG, Kwon SH, Cha SD, Shin
SJ, Lee GH, Bae I and Cho CH: Salinomycin inhibits Akt/NF-kappaB
and induces apoptosis in cisplatin resistant ovarian cancer cells.
Cancer Epidemiol. 37:512–517. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Parajuli B, Shin SJ, Kwon SH, Cha SD,
Chung R, Park WJ, Lee HG and Cho CH: Salinomycin induces apoptosis
via death receptor-5 up-regulation in cisplatin-resistant ovarian
cancer cells. Anticancer Res. 33:1457–1462. 2013.PubMed/NCBI
|
|
27
|
Ko JC, Zheng HY, Chen WC, Peng YS, Wu CH,
Wei CL, Chen JC and Lin YW: Salinomycin enhances cisplatin-induced
cytotoxicity in human lung cancer cells via down-regulation of
AKT-dependent thymidylate synthase expression. Biochem Pharmacol.
122:90–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Muntimadugu E, Kumar R, Saladi S, Rafeeqi
TA and Khan W: CD44 targeted chemotherapy for co-eradication of
breast cancer stem cells and cancer cells using polymeric
nanoparticles of salinomycin and paclitaxel. Colloids Surf B
Biointerfaces. 143:532–546. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang GN, Liang Y, Zhou LJ, Chen SP, Chen
G, Zhang TP, Kang T and Zhao YP: Combination of salinomycin and
gemcitabine eliminates pancreatic cancer cells. Cancer Lett.
313:137–144. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim JH, Chae M, Kim WK, Kim YJ, Kang HS,
Kim HS and Yoon S: Salinomycin sensitizes cancer cells to the
effects of doxorubicin and etoposide treatment by increasing DNA
damage and reducing p21 protein. Br J Pharmacol. 162:773–784. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang B, Wang X, Cai F, Chen W, Loesch U
and Zhong XY: Antitumor properties of salinomycin on
cisplatin-resistant human ovarian cancer cells in vitro and in
vivo: Involvement of p38 MAPK activation. Oncol Rep. 29:1371–1378.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhou J, Li P, Xue X, He S, Kuang Y, Zhao
H, Chen S, Zhi Q and Guo X: Salinomycin induces apoptosis in
cisplatin-resistant colorectal cancer cells by accumulation of
reactive oxygen species. Toxicol Lett. 222:139–145. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kim WK, Kim JH, Yoon K, Kim S, Ro J, Kang
HS and Yoon S: Salinomycin, a p-glycoprotein inhibitor, sensitizes
radiation-treated cancer cells by increasing DNA damage and
inducing G2 arrest. Invest New Drugs. 30:1311–1318. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao SJ, Wang XJ, Wu QJ, Liu C, Li DW, Fu
XT, Zhang HF, Shao LR, Sun JY, Sun BL, et al: Induction of G1 cell
cycle arrest in human glioma cells by salinomycin through
triggering ROS-mediated DNA damage in vitro and in vivo. Neurochem
Res. 42:997–1005. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Masuya D, Huang C, Liu D, Kameyama K,
Hayashi E, Yamauchi A, Kobayashi S, Haba R and Yokomise H: The
intratumoral expression of vascular endothelial growth factor and
interleukin-8 associated with angiogenesis in nonsmall cell lung
carcinoma patients. Cancer. 92:2628–2638. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yuan A, Yang PC, Yu CJ, Chen WJ, Lin FY,
Kuo SH and Luh KT: Interleukin-8 messenger ribonucleic acid
expression correlates with tumor progression, tumor angiogenesis,
patient survival, and timing of relapse in non-small-cell lung
cancer. Am J Respir Crit Care Med. 162:1957–1963. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gehrke T, Scherzad A, Hackenberg S,
Ickrath P, Schendzielorz P, Hagen R and Kleinsasser N: Additive
antitumor effects of celecoxib and simvastatin on head and neck
squamous cell carcinoma in vitro. Int J Oncol. 51:931–938. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mosmann T: Rapid colorimetric assay for
cellular growth and survival: Application to proliferation and
cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Perri F, Pacelli R, Della Vittoria
Scarpati G, Cella L, Giuliano M, Caponigro F and Pepe S:
Radioresistance in head and neck squamous cell carcinoma:
Biological bases and therapeutic implications. Head Neck.
37:763–770. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bussmann L, Busch CJ, Lörincz BB,
Rieckmann T, Block A and Knecht R: Perspectives in chemosensitivity
and chemoresistance assays and their implementation in head and
neck cancer. Eur Arch Otorhinolaryngol. 273:4073–4080. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Riley JL: Combination checkpoint
blockade-taking melanoma immunotherapy to the next level. N Engl J
Med. 369:187–189. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Michot JM, Lazarovici J, Ghez D, Danu A,
Fermé C, Bigorgne A, Ribrag V, Marabelle A and Aspeslagh S:
Challenges and perspectives in the immunotherapy of Hodgkin
lymphoma. Eur J Cancer. 85:67–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mann JE, Hoesli R, Michmerhuizen NL,
Devenport SN, Ludwig ML, Vandenberg TR, Matovina C, Jawad N,
Mierzwa M, Shuman AG, et al: Surveilling the potential for
precision medicine-driven PD-1/PD-L1-targeted therapy in HNSCC. J
Cancer. 8:332–344. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wood O, Clarke J, Woo J, Mirza AH, Woelk
CH, Thomas GJ, Vijayanand P, King E and Ottensmeier CH: Head and
neck squamous cell carcinomas are characterized by a stable immune
signature within the primary tumor over time and space. Clin Cancer
Res. 23:7641–7649. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pardal R, Clarke MF and Morrison SJ:
Applying the principles of stem-cell biology to cancer. Nat Rev
Cancer. 3:895–902. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hermann PC, Bhaskar S, Cioffi M and
Heeschen C: Cancer stem cells in solid tumors. Semin Cancer Biol.
20:77–84. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tehranchi R, Woll PS, Anderson K,
Buza-Vidas N, Mizukami T, Mead AJ, Astrand-Grundström I, Strömbeck
B, Horvat A, Ferry H, et al: Persistent malignant stem cells in
del(5q) myelodysplasia in remission. N Engl J Med. 363:1025–1037.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Creighton CJ, Li X, Landis M, Dixon JM,
Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A,
Herschkowitz JI, et al: Residual breast cancers after conventional
therapy display mesenchymal as well as tumor-initiating features.
Proc Natl Acad Sci USA. 106:pp. 13820–13825. 2009; View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Teng Y, Wang X, Wang Y and Ma D:
Wnt/beta-catenin signaling regulates cancer stem cells in lung
cancer A549 cells. Biochem Biophys Res Commun. 392:373–379. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Viale A, De Franco F, Orleth A, Cambiaghi
V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I,
Monestiroli S, et al: Cell-cycle restriction limits DNA damage and
maintains self-renewal of leukaemia stem cells. Nature. 457:51–56.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dean M: ABC transporters, drug resistance,
and cancer stem cells. J Mammary Gland Biol Neoplasia. 14:3–9.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kobune M, Takimoto R, Murase K, Iyama S,
Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y and Kato
J: Drug resistance is dramatically restored by hedgehog inhibitors
in CD34+ leukemic cells. Cancer Sci. 100:948–955. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z,
Ogasawara M, Keating MJ, Kondo S and Huang P: Metabolic alterations
in highly tumorigenic glioblastoma cells: Preference for hypoxia
and high dependency on glycolysis. J Biol Chem. 286:32843–32853.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Baumann M, Krause M and Hill R: Exploring
the role of cancer stem cells in radioresistance. Nat Rev Cancer.
8:545–554. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lagadec C, Vlashi E, Della Donna L, Meng
Y, Dekmezian C, Kim K and Pajonk F: Survival and self-renewing
capacity of breast cancer initiating cells during fractionated
radiation treatment. Breast Cancer Res. 12:R132010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang Y: Effects of salinomycin on cancer
stem cell in human lung adenocarcinoma A549 cells. Med Chem.
7:106–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Basu D, Montone KT, Wang LP, Gimotty PA,
Hammond R, Diehl JA, Rustgi AK, Lee JT, Rasanen K, Weinstein GS and
Herlyn M: Detecting and targeting mesenchymal-like subpopulations
within squamous cell carcinomas. Cell Cycle. 10:2008–2016. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fuchs D, Heinold A, Opelz G, Daniel V and
Naujokat C: Salinomycin induces apoptosis and overcomes apoptosis
resistance in human cancer cells. Biochem Biophys Res Commun.
390:743–749. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fuchs D, Daniel V, Sadeghi M, Opelz G and
Naujokat C: Salinomycin overcomes ABC transporter-mediated
multidrug and apoptosis resistance in human leukemia stem cell-like
KG-1a cells. Biochem Biophys Res Commun. 394:1098–1104. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang G, Wang W, Yao C, Ren J, Zhang S and
Han M: Salinomycin overcomes radioresistance in nasopharyngeal
carcinoma cells by inhibiting Nrf2 level and promoting ROS
generation. Biomed Pharmacother. 91:147–154. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Y, Zuo Y, Guan Z, Lu W, Xu Z, Zhang
H, Yang Y, Yang M, Zhu H and Chen X: Salinomycin radiosensitizes
human nasopharyngeal carcinoma cell line CNE-2 to radiation. Tumour
Biol. 37:305–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ketola K, Hilvo M, Hyötyläinen T, Vuoristo
A, Ruskeepää AL, Orešič M, Kallioniemi O and Iljin K: Salinomycin
inhibits prostate cancer growth and migration via induction of
oxidative stress. Br J Cancer. 106:99–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kim JH, Yoo HI, Kang HS, Ro J and Yoon S:
Salinomycin sensitizes antimitotic drugs-treated cancer cells by
increasing apoptosis via the prevention of G2 arrest. Biochem
Biophys Res Commun. 418:98–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bortner CD, Hughes FM Jr and Cidlowski JA:
A primary role for K+ and Na+ efflux in the
activation of apoptosis. J Biol Chem. 272:32436–32442. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Scherzad A, Hackenberg S, Froelich K, Rak
K, Hagen R, Taeger J, Bregenzer M and Kleinsasser N: Chronic
exposure of low dose salinomycin inhibits MSC migration capability
in vitro. Biomed Rep. 4:325–330. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sun J, Luo Q, Liu L, Yang X, Zhu S and
Song G: Salinomycin attenuates liver cancer stem cell motility by
enhancing cell stiffness and increasing F-actin formation via the
FAK-ERK1/2 signalling pathway. Toxicology. 384:1–10. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kopp F, Hermawan A, Oak PS, Herrmann A,
Wagner E and Roidl A: Salinomycin treatment reduces metastatic
tumor burden by hampering cancer cell migration. Mol Cancer.
13:162014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Scherzad A, Hackenberg S, Schramm C,
Froelich K, Ginzkey C, Hagen R and Kleinsasser N: Geno- and
cytotoxicity of salinomycin in human nasal mucosa and peripheral
blood lymphocytes. Toxicol In Vitro. 29:813–818. 2015. View Article : Google Scholar : PubMed/NCBI
|