Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis

  • Authors:
    • Chao Qi
    • Yuanlei Chen
    • Yixuan Zhou
    • Xucheng Huang
    • Guoli Li
    • Jin Zeng
    • Zhi Ruan
    • Xinyou Xie
    • Jun Zhang
  • View Affiliations

  • Published online on: March 8, 2018     https://doi.org/10.3892/or.2018.6303
  • Pages: 2297-2305
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Colorectal cancer (CRC) is considered the world's fourth most deadly cancer. Its metastasis is associated with poor prognosis and weakens the effects of treatment. However, the potential molecular mechanisms and key genes involved in CRC metastasis have remained to be comprehensively elucidated. The objective of the present study was to identify the key genes and molecular pathways underlying CRC metastasis. Differentially expressed genes (DEGs) between primary CRC tissues and metastatic CRC were identified by analyzing the GSE2509 dataset from the Gene Expression Omnibus database. Subsequently, the DEGs were subjected to Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses via the Database for Annotation, Visualization and Integrated Discovery (DAVID). Next, the top ten hub genes were identified in a protein-protein interaction (PPI) network. Sub-network and pathway enrichment analysis were respectively performed with the plugin MCODE and DAVID. Finally, reverse transcription-quantitative polymerase chain reaction assays were performed to corroborate the expression levels of the top five potential metastasis-associated genes in the clinical samples of CRC patients. A total of 7,384 DEGs were obtained, among which 3,949 were upregulated and 3,435 were downregulated. GO and KEGG enrichment analyses identified numerous possible biological processes and pathways that may have a role in the metastasis of CRC. The leading ten hub genes, recognized from the PPI, were epidermal growth factor receptor (EGFR), Has proto-oncogene GTPase (HRas), Wnt family member 5A (Wnt5a), serine/threonine kinase 1 (Akt1), cyclin-dependent kinase inhibitor 1A (CDKN1a), early growth response 1, Ras homolog family member A, cyclin D1 and Ras-related C3 botulinum toxin substrate 1. Sub-network analysis disclosed the most prominent three modules. Ultimately, EGFR, HRas and Akt1 were verified to be upregulated DEGs, while Wnt5a and CDKN1a were downregulated DEGs when compared with the primary controls. In conclusion, the present study revealed several key genes and relevant molecular mechanisms that may enhance the current understanding of CRC metastasis, making them significant potential foci for the discovery of further CRC treatments.

References

1 

Choi Y, Sateia HF, Peairs KS and Stewart RW: Screening for colorectal cancer. Semin Oncol. 44:34–44. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Manku G, Hueso A, Brimo F, Chan P, Gonzalez-Peramato P, Jabado N, Gayden T, Bourgey M, Riazalhosseini Y and Culty M: Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas. Andrology. 4:95–110. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Siegel R, Desantis C and Jemal A: Colorectal cancer statistics, 2014. CA Cancer J Clin. 64:104–117. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Basu A, Seth S, Arora K and Verma M: Evaluating estradiol levels in male patients with colorectal carcinoma. J Clin Diagn Res. 9:BC08–BC10. 2015.PubMed/NCBI

5 

Ciombor KK, Wu C and Goldberg RM: Recent therapeutic advances in the treatment of colorectal cancer. Annu Rev Med. 66:83–95. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Yu H, Gao G, Jiang L, Guo L, Lin M, Jiao X, Jia W and Huang J: Decreased expression of miR-218 is associated with poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 6:2904–2911. 2013.PubMed/NCBI

7 

Zhou C, Cui F, Li J, Wang D, Wei Y, Wu Y, Wang J, Zhu H and Wang S: miR-650 represses high-risk non-metastatic colorectal cancer progression via inhibition of AKT2/GSK3β/E-cadherin pathway. Oncotarget. 8:49534–49547. 2017.PubMed/NCBI

8 

De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P and Delrio P: Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 34:1087–1096. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Yamasaki M, Takemasa I, Komori T, Watanabe S, Sekimoto M, Doki Y, Matsubara K and Monden M: The gene expression profile represents the molecular nature of liver metastasis in colorectal cancer. Int J Oncol. 30:129–138. 2007.PubMed/NCBI

10 

Hagland HR, Berg M, Jolma IW, Carlsen A and Søreide K: Molecular pathways and cellular metabolism in colorectal cancer. Dig Surg. 30:12–25. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Gao M, Zhong A, Patel N, Alur C and Vyas D: High throughput RNA sequencing utility for diagnosis and prognosis in colon diseases. World J Gastroenterol. 23:2819–2825. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S and Pinto R: Next-generation sequencing: Advances and applications in cancer diagnosis. Onco Targets Ther. 9:7355–7365. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M and Quattrone A: Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis. 27:1323–1333. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Gene Ontology Consortium, . The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 34:D322–D326. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Gene Ontology Consortium, . Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43(D1): D1049–D1056. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1): 27–30. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Köhler S, Bauer S, Horn D and Robinson PN: Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 82:949–958. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Aran V, Victorino AP, Thuler LC and Ferreira CG: Colorectal Cancer: Epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 15:195–203. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Taylor-Weiner A, Zack T, O'Donnell E, Guerriero JL, Bernard B, Reddy A, Han GC, AlDubayan S, Amin-Mansour A, Schumacher SE, et al: Genomic evolution and chemoresistance in germ-cell tumours. Nature. 540:114–118. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Chang YT, Tseng HC, Huang CC, Chen YP, Chiang HC and Chou FP: Relative down-regulation of apoptosis and autophagy genes in colorectal cancer. Eur J Clin Invest. 41:84–92. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Perez R, Wu N, Klipfel AA and Beart RW Jr: A better cell cycle target for gene therapy of colorectal cancer: Cyclin G. J Gastrointest Surg. 7:884–889. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Fini MA, Elias A, Johnson RJ and Wright RM: Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med. 1:162012. View Article : Google Scholar : PubMed/NCBI

24 

Ikegami T, Natsumeda Y and Weber G: Decreased concentration of xanthine dehydrogenase (EC 1.1.1.204) in rat hepatomas. Cancer Res. 46:3838–3841. 1986.PubMed/NCBI

25 

Sun AS and Cederbaum AI: Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Res. 40:4677–4681. 1980.PubMed/NCBI

26 

Tanriverdi O, Cokmert S, Oktay E, Pilanci KN, Menekse S, Kocar M, Sen CA, Avci N, Akman T, Ordu C, et al: Prognostic significance of the baseline serum uric acid level in non-small cell lung cancer patients treated with first-line chemotherapy: A study of the Turkish Descriptive Oncological Researches Group. Med Oncol. 31:2172014. View Article : Google Scholar : PubMed/NCBI

27 

Cetin AO, Omar M, Calp S, Tunca H, Yimaz N, Ozseker B and Tanriverdi O: Hyperuricemia at the time of diagnosis is a factor for poor prognosis in patients with stage II and III colorectal cancer (uric acid and colorectal cancer). Asian Pac J Cancer Prev. 18:485–490. 2017.PubMed/NCBI

28 

Zhao B, Li L, Lei Q and Guan KL: The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 24:862–874. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Liu H, Jiang D, Chi F and Zhao B: The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell. 3:291–304. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Wierzbicki PM and Rybarczyk A: The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol. 53:105–119. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Serra R, Easter SL, Jiang W and Baxley SE: Wnt5a as an effector of TGFβ in mammary development and cancer. J Mammary Gland Biol Neoplasia. 16:157–167. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Endo M, Nishita M, Fujii M and Minami Y: Insight into the role of Wnt5a-induced signaling in normal and cancer cells. Int Rev Cell Mol Biol. 314:117–148. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Hu B, Wang Q, Wang YA, Hua S, Sauvé CG, Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, et al: Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell. 167:1281–1295. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W and Kikuchi A: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66:10439–10448. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Yong BC, Lu JC, Xie XB, Su Q, Tan PX, Tang QL, Wang J, Huang G, Han J, Xu HW, et al: LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients. Tumour Biol. 39:10104283176911882017. View Article : Google Scholar : PubMed/NCBI

37 

Mikels AJ and Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4:e1152006. View Article : Google Scholar : PubMed/NCBI

38 

Prasad CP, Chaurasiya SK, Axelsson L and Andersson T: WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Mol Oncol. 7:870–883. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Säfholm A, Tuomela J, Rosenkvist J, Dejmek J, Härkönen P and Andersson T: The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res. 14:6556–6563. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Jönsson M, Dejmek J, Bendahl PO and Andersson T: Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62:409–416. 2002.PubMed/NCBI

41 

Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/β-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 14:55–61. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Elbjeirami WM and Sughayer MA: KRAS mutations and subtyping in colorectal cancer in Jordanian patients. Oncol Lett. 4:705–710. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Nakano H, Yamamoto F, Neville C, Evans D, Mizuno T and Perucho M: Isolation of transforming sequences of two human lung carcinomas: Structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad Sci USA. 81:71–75. 1984. View Article : Google Scholar : PubMed/NCBI

44 

Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G and Barbacid M: Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science. 223:661–664. 1984. View Article : Google Scholar : PubMed/NCBI

45 

Espada J, Pérez-Moreno M, Braga VM, Rodriguez-Viciana P and Cano A: H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes. J Cell Biol. 146:967–980. 1999. View Article : Google Scholar : PubMed/NCBI

46 

Mendoza MC, Er EE and Blenis J: The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD and Downward J: Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15:2442–2451. 1996.PubMed/NCBI

48 

Michael JV, Wurtzel JG and Goldfinger LE: Inhibition of galectin-1 sensitizes HRAS-driven tumor growth to rapamycin treatment. Anticancer Res. 36:5053–5061. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Chang YY, Lin PC, Lin HH, Lin JK, Chen WS, Jiang JK, Yang SH, Liang WY and Chang SC: Mutation spectra of RAS gene family in colorectal cancer. Am J Surg. 212:537–544. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Feng J, Hua F, Shuo R, Chongfeng G, Huimian X, Nakajima T, Subao W and Tsuchida N: Upregulation of non-mutated H-ras and its upstream and downstream signaling proteins in colorectal cancer. Oncol Rep. 8:1409–1413. 2001.PubMed/NCBI

51 

Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C and Novaro V: AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep. 7:442442017. View Article : Google Scholar : PubMed/NCBI

52 

Hofbauer SW, Krenn PW, Hofbauer Piñόn J, Pucher S, Asslaber D, Egle A, Hartmann TN and Greil R: The AKT1 isoform plays a dominant role in the survival and chemoresistance of chronic lymphocytic leukaemia cells. Br J Haematol. 172:815–819. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Sahlberg Häggblad S, Mortensen AC, Haglöf J, Engskog MK, Arvidsson T, Pettersson C, Glimelius B, Stenerlöw B and Nestor M: Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. Int J Oncol. 50:5–14. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S and Brugge JS: Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 171:1023–1034. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Wang S and Basson MD: Akt directly regulates focal adhesion kinase through association and serine phosphorylation: Implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol. 300:C657–C670. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Papadimitriou K, Rolfo C, Dewaele E, VanDe Wiel M, Van den Brande J, Altintas S, Huizing M, Specenier P and Peeters M: Incorporating anti-VEGF pathway therapy as a continuum of care in metastatic colorectal cancer. Curr Treat Options Oncol. 16:182015. View Article : Google Scholar : PubMed/NCBI

57 

Xu WW, Li B, Lam AK, Tsao SW, Law SY, Chan KW, Yuan QJ and Cheung AL: Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget. 6:1790–1805. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Wang H, Zhang C, Ning Z, Xu L, Zhu X and Meng Z: Bufalin enhances anti-angiogenic effect of sorafenib via AKT/VEGF signaling. Int J Oncol. 48:1229–1241. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Salomon DS, Brandt R, Ciardiello F and Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 19:183–232. 1995. View Article : Google Scholar : PubMed/NCBI

60 

Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K and Ludwig H: The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer. 71:2454–2460. 1993. View Article : Google Scholar : PubMed/NCBI

61 

Srivatsa S, Paul MC, Cardone C, Holcmann M, Amberg N, Pathria P, Diamanti MA, Linder M, Timelthaler G, Dienes HP, et al: EGFR in tumor-associated myeloid cells promotes development of colorectal cancer in mice and associates with outcomes of patients. Gastroenterology. 153:178–190. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Bardelli A and Siena S: Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 28:1254–1261. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Georgakilas AG, Martin OA and Bonner WM: p21: A two-faced genome guardian. Trends Mol Med. 23:310–319. 2017. View Article : Google Scholar : PubMed/NCBI

64 

el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE and Wang Y: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169–1174. 1994.PubMed/NCBI

65 

el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI

66 

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI

67 

Yasui W, Akama Y, Yokozaki H, Semba S, Kudo Y, Shimamoto F and Tahara E: Expression of p21WAF1/CIP1 in colorectal adenomas and adenocarcinomas and its correlation with p53 protein expression. Pathol Int. 47:470–477. 1997. View Article : Google Scholar : PubMed/NCBI

68 

Matsushita K, Kobayashi S, Kato M, Itoh Y, Okuyama K, Sakiyama S and Isono K: Reduced messenger RNA expression level of p21 CIP1 in human colorectal carcinoma tissues and its association with p53 gene mutation. Int J Cancer. 69:259–264. 1996. View Article : Google Scholar : PubMed/NCBI

69 

Schwandner O, Bruch HP and Broll R: Prognostic significance of p21 and p27 protein, apoptosis, clinical and histologic factors in rectal cancer without lymph node metastases. Eur Surg Res. 34:389–396. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2018
Volume 39 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qi, C., Chen, Y., Zhou, Y., Huang, X., Li, G., Zeng, J. ... Zhang, J. (2018). Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis. Oncology Reports, 39, 2297-2305. https://doi.org/10.3892/or.2018.6303
MLA
Qi, C., Chen, Y., Zhou, Y., Huang, X., Li, G., Zeng, J., Ruan, Z., Xie, X., Zhang, J."Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis". Oncology Reports 39.5 (2018): 2297-2305.
Chicago
Qi, C., Chen, Y., Zhou, Y., Huang, X., Li, G., Zeng, J., Ruan, Z., Xie, X., Zhang, J."Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis". Oncology Reports 39, no. 5 (2018): 2297-2305. https://doi.org/10.3892/or.2018.6303