Endogenous Leu332Gln mutation in p53 disrupts the tetramerization ability in a canine mammary gland tumor cell line

  • Authors:
    • Kazuhiko Ochiai
    • Daigo Azakami
    • Masami Morimatsu
    • Hinako Hirama
    • Shota Kawakami
    • Takayuki Nakagawa
    • Masaki Michishita
    • Ai S. Egusa
    • Takanori Sasaki
    • Masami Watanabe
    • Toshinori Omi
  • View Affiliations

  • Published online on: May 2, 2018     https://doi.org/10.3892/or.2018.6409
  • Pages: 488-494
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Mutations in the p53 gene are associated with more than half of all human cancers. These mutations often cause a disruption of the tumor-suppressor function of p53 and induce genomic instabilities. Wild‑type p53 requires tetramerization to function as an initiator of cell cycle arrest and apoptosis. Although alterations in p53 tetramerization caused by mutation have been well studied, there are few cell lines containing an endogenous mutation in the tetramerization domain of p53. Here, we report the discovery of a canine mammary gland tumor cell line CTB‑m2, which contains the Leu332Gln (L332Q) mutation corresponding to Leu344 in the tetramerization domain of human p53. Although CTB‑m2 cells are genetically heterozygous for the Leu332Gln mutation, the mutant mRNA was almost exclusively expressed. CTB‑m2 cells showed enhanced cell proliferation compared to wild‑type p53-expressing CTB‑m cells of the same lineage. A p53 tetramerization reporter assay showed that the ability of the p53 mutant to form tetramers was significantly lower than that of wild‑type p53. An immunoblot analysis of cross-linked p53 oligomerized forms demonstrated that the L332Q mutant lacked the ability to form tetramers but retained the ability to form dimers. These data suggest that the p53 mutant cell line CTB‑m2 could be a useful tool for analyzing the precise tetramerization mechanisms of p53 and verifying the effects of therapeutic agents against tumors expressing p53 mutants that lack the ability to tetramerize.

References

1 

Meek DW: Tumour suppression by p53: A role for the DNA damage response? Nat Rev Cancer. 9:714–723. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Lane D and Levine A: p53 Research: The past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2:a0008932010. View Article : Google Scholar : PubMed/NCBI

3 

Bieging KT, Mello SS and Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI

6 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 77:557–582. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Rajagopalan S, Huang F and Fersht AR: Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res. 39:2294–2303. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Jeffrey PD, Gorina S and Pavletich NP: Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 267:1498–1502. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Kamada R, Toguchi Y, Nomura T, Imagawa T and Sakaguchi K: Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 106:598–612. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Mateu MG and Fersht AR: Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J. 17:2748–2758. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Kamada R, Nomura T, Anderson CW and Sakaguchi K: Cancer-associated p53 tetramerization domain mutants: Quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem. 286:252–258. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Varley JM, Thorncroft M, McGown G, Tricker K, Birch JM and Evans DG: A novel deletion within exon 6 of TP53 in a family with Li-Fraumeni-like syndrome, and LOH in a benign lesion from a mutation carrier. Cancer Genet Cytogenet. 90:14–16. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Atema A and Chène P: The gain of function of the p53 mutant Asp281Gly is dependent on its ability to form tetramers. Cancer Lett. 185:103–109. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Muller PA and Vousden KH: Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Uyama R, Nakagawa T, Hong SH, Mochizuki M, Nishimura R and Sasaki N: Establishment of four pairs of canine mammary tumour cell lines derived from primary and metastatic origin and their E-cadherin expression. Vet Comp Oncol. 4:104–113. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Kato Y, Ochiai K, Kawakami S, Nakao N, Azakami D, Bonkobara M, Michishita M, Morimatsu M, Watanabe M and Omi T: Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines. BMC Vet Res. 13:1702017. View Article : Google Scholar : PubMed/NCBI

17 

Imagawa T, Terai T, Yamada Y, Kamada R and Sakaguchi K: Evaluation of transcriptional activity of p53 in individual living mammalian cells. Anal Biochem. 387:249–256. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Cubillos-Rojas M, Schneider T, Sánchez-Tena S, Bartrons R, Ventura F and Rosa JL: Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization. Anal Bioanal Chem. 408:1715–1719. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC and Ferrin TE: UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem. 25:1605–1612. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Salvatella X, Martinell M, Gairí M, Mateu MG, Feliz M, Hamilton AD, De Mendoza J and Giralt E: A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53. Angew Chem Int Ed Engl. 43:196–198. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Martinell M, Salvatella X, Fernández-Carneado J, Gordo S, Feliz M, Menéndez M and Giralt E: Synthetic ligands able to interact with the p53 tetramerization domain. Towards understanding a protein surface recognition event. ChemBioChem. 7:1105–1113. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Gordo S, Martos V, Santos E, Menéndez M, Bo C, Giralt E and de Mendoza J: Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand. Proc Natl Acad Sci USA. 105:16426–16431. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Osaki S, Nakanishi Y, Takayama K, Pei XH, Ueno H and Hara N: Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells. Cancer Gene Ther. 7:300–307. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Yoshikawa K, Hamada J, Tada M, Kameyama T, Nakagawa K, Suzuki Y, Ikawa M, Hassan NM, Kitagawa Y and Moriuchi T: Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells. Biomed Res. 31:401–411. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Tornaletti S and Pfeifer GP: Complete and tissue-independent methylation of CpG sites in the p53 gene: Implications for mutations in human cancers. Oncogene. 10:1493–1499. 1995.PubMed/NCBI

26 

Soussi T and Lozano G: p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 331:834–842. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Lin C, Liang Y, Zhu H, Zhang J and Zhong X: R280T mutation of p53 gene promotes proliferation of human glioma cells through GSK-3β/PTEN pathway. Neurosci Lett. 529:60–65. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Retzlaff M, Rohrberg J, Küpper NJ, Lagleder S, Bepperling A, Manzenrieder F, Peschek J, Kessler H and Buchner J: The regulatory domain stabilizes the p53 tetramer by intersubunit contacts with the DNA binding domain. J Mol Biol. 425:144–155. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Joerger AC and Fersht AR: The p53 Pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 85:375–404. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2018
Volume 40 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ochiai, K., Azakami, D., Morimatsu, M., Hirama, H., Kawakami, S., Nakagawa, T. ... Omi, T. (2018). Endogenous Leu332Gln mutation in p53 disrupts the tetramerization ability in a canine mammary gland tumor cell line. Oncology Reports, 40, 488-494. https://doi.org/10.3892/or.2018.6409
MLA
Ochiai, K., Azakami, D., Morimatsu, M., Hirama, H., Kawakami, S., Nakagawa, T., Michishita, M., Egusa, A. S., Sasaki, T., Watanabe, M., Omi, T."Endogenous Leu332Gln mutation in p53 disrupts the tetramerization ability in a canine mammary gland tumor cell line". Oncology Reports 40.1 (2018): 488-494.
Chicago
Ochiai, K., Azakami, D., Morimatsu, M., Hirama, H., Kawakami, S., Nakagawa, T., Michishita, M., Egusa, A. S., Sasaki, T., Watanabe, M., Omi, T."Endogenous Leu332Gln mutation in p53 disrupts the tetramerization ability in a canine mammary gland tumor cell line". Oncology Reports 40, no. 1 (2018): 488-494. https://doi.org/10.3892/or.2018.6409