|
1
|
Amolins MW and Blagg BS: Natural product
inhibitors of Hsp90: Potential leads for drug discovery. Mini Rev
Med Chem. 9:140–152. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang X, Chen M, Zhou J and Zhang X: HSP27,
70 and 90, anti-apoptotic proteins, in clinical cancer therapy
(Review). Int J Oncol. 45:18–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Whitesell L and Lindquist SL: HSP90 and
the chaperoning of cancer. Nat Rev Cancer. 5:761–772. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Scaltriti M, Dawood S and Cortes J:
Molecular pathways: Targeting hsp90-who benefits and who does not.
Clin Cancer Res. 18:4508–4513. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mori M, Hitora T, Nakamura O, Yamagami Y,
Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces
autophagy and apoptosis in osteosarcoma cells. Int J Oncol.
46:47–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hernandez MP, Chadli A and Toft DO: HSP40
binding is the first step in the HSP90 chaperoning pathway for the
progesterone receptor. J Biol Chem. 277:11873–11881. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pratt WB, Galigniana MD, Morishima Y and
Murphy PJ: Role of molecular chaperones in steroid receptor action.
Essays Biochem. 40:41–58. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chandarlapaty S, Scaltriti M, Angelini P,
Ye Q, Guzman M, Hudis CA, Norton L, Solit DB, Arribas J, Baselga J
and Rosen N: Inhibitors of HSP90 block p95-HER2 signaling in
Trastuzumab-resistant tumors and suppress their growth. Oncogene.
29:325–334. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Scaltriti M, Serra V, Normant E, Guzman M,
Rodriguez O, Lim AR, Slocum KL, West KA, Rodriguez V, Prudkin L, et
al: Antitumor activity of the Hsp90 inhibitor IPI-504 in
HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther.
10:817–824. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen Y, Sawyers CL and Scher HI: Targeting
the androgen receptor pathway in prostate cancer. Curr Opin
Pharmacol. 8:440–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vanaja DK, Mitchell SH, Toft DO and Young
CY: Effect of geldanamycin on androgen receptor function and
stability. Cell Stress Chaperones. 7:55–64. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chapman PB, Hauschild A, Robert C, Haanen
JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et
al: Improved survival with vemurafenib in melanoma with BRAF V600E
mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
da Rocha Dias S, Friedlos F, Light Y,
Springer C, Workman P and Marais R: Activated B-RAF is an Hsp90
client protein that is targeted by the anticancer drug
17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65:10686–10691.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Haigis KM, Kendall KR, Wang Y, Cheung A,
Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A,
Sebolt-Leopold J, Shannon KM, et al: Differential effects of
oncogenic K-Ras and N-Ras on proliferation, differentiation and
tumor progression in the colon. Nat Genet. 40:600–608. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shimamura T, Lowell AM, Engelman JA and
Shapiro GI: Epidermal growth factor receptors harboring kinase
domain mutations associate with the heat shock protein 90 chaperone
and are destabilized following exposure to geldanamycins. Cancer
Res. 65:6401–6408. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shiotsu Y, Soga S and Akinaga S: Heat
shock protein 90-antagonist destabilizes Bcr-Abl/HSP90 chaperone
complex. Leuk Lymphoma. 43:961–968. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Castro JE, Prada CE, Loria O, Kamal A,
Chen L, Burrows FJ and Kipps TJ: ZAP-70 is a novel conditional heat
shock protein 90 (Hsp90) client: Inhibition of Hsp90 leads to
ZAP-70 degradation, apoptosis, and impaired signaling in chronic
lymphocytic leukemia. Blood. 106:2506–2512. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bauer S, Yu LK, Demetri GD and Fletcher
JA: Heat shock protein 90 inhibition in imatinib-resistant
gastrointestinal stromal tumor. Cancer Res. 66:9153–9161. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Stebbins CE, Russo AA, Schneider C, Rosen
N, Hartl FU and Pavletich NP: Crystal structure of an
Hsp90-geldanamycin complex: Targeting of a protein chaperone by an
antitumor agent. Cell. 89:239–250. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Roe SM, Prodromou C, O'Brien R, Ladbury
JE, Piper PW and Pearl LH: Structural basis for inhibition of the
Hsp90 molecular chaperone by the antitumor antibiotics radicicol
and geldanamycin. J Med Chem. 42:260–266. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Prodromou C, Roe SM, O'Brien R, Ladbury
JE, Piper PW and Pearl LH: Identification and structural
characterization of the ATP/ADP-binding site in the Hsp90 molecular
chaperone. Cell. 90:65–75. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Neckers L, Schulte TW and Mimnaugh E:
Geldanamycin as a potential anti-cancer agent: Its molecular target
and biochemical activity. Invest New Drugs. 17:361–373. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Solit DB, Zheng FF, Drobnjak M, Münster
PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB,
et al: 17-Allylamino-17-demethoxygeldanamycin induces the
degradation of androgen receptor and HER-2/neu and inhibits the
growth of prostate cancer xenografts. Clin Cancer Res. 8:986–993.
2002.PubMed/NCBI
|
|
25
|
Solit DB, Ivy SP, Kopil C, Sikorski R,
Morris MJ, Slovin SF, Kelly WK, DeLaCruz A, Curley T, Heller G, et
al: Phase I trial of 17-allylamino-17-demethoxygeldanamycin in
patients with advanced cancer. Clin Cancer Res. 13:1775–1782. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Delmotte P and Delmotte-Plaque J: A new
antifungal substance of fungal origin. Nature. 171:3441953.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Soga S, Neckers LM, Schulte TW, Shiotsu Y,
Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T
and Akinaga S: KF25706, a novel oxime derivative of radicicol,
exhibits in vivo antitumor activity via selective depletion of
Hsp90 binding signaling molecules. Cancer Res. 59:2931–2938.
1999.PubMed/NCBI
|
|
28
|
Chiosis G, Timaul MN, Lucas B, Munster PN,
Zheng FF, Sepp-Lorenzino L and Rosen N: A small molecule designed
to bind to the adenine nucleotide pocket of Hsp90 causes Her2
degradation and the growth arrest and differentiation of breast
cancer cells. Chem Biol. 8:289–299. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Taldone T and Chiosis G: Purine-scaffold
Hsp90 inhibitors. Curr Top Med Chem. 9:1436–1446. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lundgren K, Zhang H, Brekken J, Huser N,
Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC,
et al: BIIB021, an orally available, fully synthetic small-molecule
inhibitor of the heat shock protein Hsp90. Mol Cancer Ther.
8:921–929. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang H, Neely L, Lundgren K, Yang YC,
Lough R, Timple N and Burrows F: BIIB021, a synthetic Hsp90
inhibitor, has broad application against tumors with acquired
multidrug resistance. Int J Cancer. 126:1226–1234. 2010.PubMed/NCBI
|
|
32
|
Karvela M, Helgason GV and Holyoake TL:
Mechanisms and novel approaches in overriding tyrosine kinase
inhibitor resistance in chronic myeloid leukemia. Expert Rev
Anticancer Ther. 12:381–392. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jain P, Kantarjian H, Jabbour E, Gonzalez
GN, Borthakur G, Pemmaraju N, Daver N, Gachimova E, Ferrajoli A,
Kornblau S, et al: Ponatinib as first-line treatment for patients
with chronic myeloid leukaemia in chronic phase: A phase 2 study.
Lancet Haematol. 2:e376–e383. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Khajapeer KV and Baskaran R: Hsp90
inhibitors for the treatment of chronic myeloid leukemia. Leuk Res
Treatment. 2015:7576942015.PubMed/NCBI
|
|
35
|
He W, Ye X, Huang X, Lel W, You L, Wang L,
Chen X and Qian W: Hsp90 inhibitor, BIIB021, induces apoptosis and
autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and
-resistant chronic myeloid leukemia cells. Int J Oncol.
48:1710–1720. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Heidel FH, Bullinger L, Feng Z, Wang Z,
Neff TA, Stein L, Kalaitzidis D, Lane SW and Armstrong SA: Genetic
and pharmacologic inhibition of β-catenin targets
imatinib-resistant leukemia stem cells in CML. Cell Stem Cell.
10:412–424. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li H, Wang P, Sun Q, Ding WX, Yin XM,
Sobol RW, Stolz DB, Yu J and Zhang L: Following cytochrome c
release, autophagy is inhibited during chemotherapy-induced
apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res.
71:3625–3634. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wirawan E, Vande Walle L, Kersse K,
Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R,
Verspurten J, Declercq W, et al: Caspase-mediated cleavage of
Beclin-1 inactivates Beclin-1-induced autophagy and enhances
apoptosis by promoting the release of proapoptotic factors from
mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Glimelius I and Diepstra A: Novel
treatment concepts in Hodgkin lymphoma. J Intern Med. 281:247–260.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Georgakis GV, Li Y, Rassidakis GZ,
Martinez-Valdez H, Medeiros LJ and Younes A: Inhibition of heat
shock protein 90 function by
17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells
down-regulates Akt kinase, dephosphorylates extracellular
signal-regulated kinase, and induces cell cycle arrest and cell
death. Clin Cancer Res. 12:584–590. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Broemer M, Krappmann D and Scheidereit C:
Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis
and for constitutive and inducible IKK and NF-kappaB activation.
Oncogene. 23:5378–5386. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Janz M, Stühmer T, Vassilev LT and Bargou
RC: Pharmacologic activation of p53-dependent and p53-independent
apoptotic pathways in Hodgkin/Reed-Sternberg cells. Leukemia.
21:772–779. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Boll B, Eltaib F, Reiners KS, von Tresckow
B, Tawadros S, Simhadri VR, Burrows FJ, Lundgren K, Hansen HP,
Engert A, et al: Heat shock protein 90 inhibitor BIIB021 (CNF2024)
depletes NF-kappaB and sensitizes Hodgkin's lymphoma cells for
natural killer cell-mediated cytotoxicity. Clin Cancer Res.
15:5108–5116. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Strid J, Roberts SJ, Filler RB, Lewis JM,
Kwong BY, Schpero W, Kaplan DH, Hayday AC and Girardi M: Acute
upregulation of an NKG2D ligand promotes rapid reorganization of a
local immune compartment with pleiotropic effects on
carcinogenesis. Nat Immunol. 9:146–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Friese MA, Platten M, Lutz SZ, Naumann U,
Aulwurm S, Bischof F, Bühring HJ, Dichgans J, Rammensee HG, Steinle
A and Weller M: MICA/NKG2D-mediated immunogene therapy of
experimental gliomas. Cancer Res. 63:8996–9006. 2003.PubMed/NCBI
|
|
46
|
Nador RG, Cesarman E, Chadburn A, Dawson
DB, Ansari MQ, Sald J and Knowles DM: Primary effusion lymphoma: A
distinct clinicopathologic entity associated with the Kaposi's
sarcoma-associated herpes virus. Blood. 88:645–656. 1996.PubMed/NCBI
|
|
47
|
Gopalakrishnan R, Matta H and Chaudhary
PM: A purine scaffold HSP90 inhibitor BIIB021 has selective
activity against KSHV-associated primary effusion lymphoma and
blocks vFLIP K13-induced NF-kB. Clin Cancer Res. 19:5016–5026.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Suzuki M, Takeda T, Nakagawa H, Iwata S,
Watanabe T, Siddiquey MN, Goshima F, Murata T, Kawada J, Ito Y, et
al: The heat shock protein 90 inhibitor BIIB021 suppresses the
growth of T and natural killer cell lymphomas. Front Microbiol.
6:2802015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ferrando AA, Neuberg DS, Staunton J, Loh
ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland
DG, et al: Gene expression signatures define novel oncogenic
pathways in T cell acute lymphoblastic leukemia. Cancer Cell.
1:75–87. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li M, Zhang X, Zhou WJ, Chen YH, Liu H,
Liu L, Yang CM and Qan WB: Hsp90 inhibitor BIIB021 enhances
triptolide-induced apoptosis of human T-cell acute lymphoblastic
leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta
Pharmacol Sin. 34:1545–1553. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lin S, Li J, Zhou W, Qian W, Wang B and
Chen Z: BIIB021, an Hsp90 inhibitor, effectively kills a
myelodysplastic syndrome cell line via the activation of caspases
and inhibition of PI3K/Akt and NF-kB pathway proteins. Exp Ther
Med. 7:1539–1544. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rubin BP, Heinrich MC and Corless CL:
Gastrointestinal stromal tumour. Lancet. 369:1731–1741. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen LL, Trent JC, Wu EF, Fuller GN,
Ramdas L, Zhang W, Raymond AK, Prieto VG, Oyedeji CO, Hunt KK, et
al: A missense mutation in KIT kinase domain 1 correlates with
imatinib resistance in gastrointestinal stromal tumors. Cancer Res.
64:5913–5919. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gramza AW, Corless CL and Heinrich MC:
Resistance to tyrosine kinase inhibitors in gastrointestinal
stromal tumors. Clin Cancer Res. 15:7510–7518. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Solit DB and Rosen N: Hsp90: A novel
target for cancer therapy. Curr Top Med Chem. 6:1205–1214. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dickson MA, Okuno SH, Keohan ML, Maki RG,
D'Adamo DR, Akhurst TJ, Antonescu CR and Schwartz GK: phase II
study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal
tumors. Ann Oncol. 24:252–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Saif MW, Takimoto C, Mita M, Banerji U,
Lamanna N, Castro J, O'Brien S, Stogard C and Von Hoff D: A phase
1, dose-escalation, pharmacokinetic and pharmacodynamic study of
BIIB021 administered orally in patients with advanced solid tumors.
Clin Cancer Res. 20:445–455. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ballestas ME, Chatis PA and Kaye KM:
Efficient persistence of extrachromosomal KSHV DNA mediated by
latency-associated nuclear antigen. Science. 284:641–644. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ballestas ME and Kaye KM: Kaposi's
sarcoma-associated herpesvirus latency-associated nuclear antigen 1
mediates episome persistence through cis-acting terminal repeat
(TR) sequence and specifically binds TR DNA. J Virol. 75:3250–3258.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen W, Sin SH, Wen KW, Damania B and
Dittmer DP: Hsp90 inhibitors are efficacious against Kaposi Sarcoma
by enhancing the degradation of the essential viral gene LANA, of
the viral co-receptor EphA2 as well as other client proteins. PLoS
Pathog. 8:e10030482012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yin X, Zhang H, Lundgren K, Wilson L,
Burrows F and Shores CG: BIIB021, a novel Hsp90 inhibitor,
sensitizes head and neck squamous cell carcinoma to radiotherapy.
Int J Cancer. 126:1216–1225. 2010.PubMed/NCBI
|
|
62
|
Wang XT, Bao CH, Jia YB, Wang N, Ma W, Liu
F, Wang C, Wang JB, Song QX and Cheng YF: BIIB021, a novel Hsp90
inhibitor, sensitizes esophageal squamous cell carcinoma to
radiation. Biochem Biophys Res Commun. 452:945–950. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG,
Yoo HJ and Lee SJ: Synergistic cytotoxicity of BIIB021 with
triptolide through suppression of PI3K/Akt/mTOR and NF-kB signal
pathways in thyroid carcinoma cells. Biomed Pharmacother. 83:22–32.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yufu Y, Nishimura J and Nawata H: High
constitutive expression of heat shock protein 90 alpha in human
acute leukemia cells. Leuk Res. 16:597–605. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chant ID, Rose PE and Morris AG: Analysis
of heat-shock protein expression in myeloid leukaemia cells by flow
cytometry. Br J Haematol. 90:163–168. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mitsiades CS, Mitsiades NS, McMullan CJ,
Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R,
Munshi NC, et al: Antimyeloma activity of heat shock protein-90
inhibition. Blood. 107:1092–1100. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Valbuena JR, Rassidakis GZ, Lin P, Atwell
C, Georgakis GV, Younes A, Jones D and Medeiros LJ: Expression of
heat-shock protein-90 in non-Hodgkin's lymphomas. Mod Pathol.
18:1343–1349. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Milani M, Laranjeira AB, de Vasconcellos
JF, Brandalise SR, Nowill AE and Yunes JA: Plasma Hsp90 level as a
marker of early acute lymphoblastic leukemia engraftment and
progression in mice. PLoS One. 10:e01292982015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Flandrin P, Guyotat D, Duval A, Cornillon
J, Tavernier E, Nadal N and Campos L: Significance of heat-shock
protein (HSP) 90 expression in acute myeloid leukemia cells. Cell
Stress Chaperones. 13:357–364. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Reikvam H, Hatfield KJ, Ersvaer E, Hovland
R, Skavland J, Gjertsen BT, Petersen K and Bruserud O: Expression
profile of heat shock proteins in acute myeloid leukaemia patients
reveals a distinct signature strongly associated with FLT3 mutation
status-consequences and potentials for pharmacological
intervention. Br J Haematol. 156:468–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tsai HJ, Shih NY, Kuo SH, Cheng AL, Lin
HY, Chen TY, Chang KC, Lin SF, Chang JS and Chen LT: AUY922
effectively targets against activated B cell subtype of diffuse
large B-cell lymphoma and low-grade lymphoma cells harboring
genetic alteration-associated nuclear factor-kB activation. Leuk
Lymphoma. 56:2674–2682. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Cerchietti LC, Lopes EC, Yang SN, Hatzi K,
Bunting KL, Tsikitas LA, Mallik A, Robles AI, Walling J,
Varticovski L, et al: A purine scaffold Hsp90 inhibitor
destabilizes BCL-6 and has specific antitumor activity in
BCL-6-dependent B cell lymphomas. Nat Med. 15:1369–1376. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sanda T, Tyner JW, Gutierrez A, Ngo VN,
Glover J, Chang BH, Yost A, Ma W, Fleischman AG, Zhou W, et al:
TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic
leukemia. Cancer Discov. 3:564–577. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Taipale M, Krykbaeva I, Koeva M, Kayatekin
C, Westover KD, Karras GI and Lindquist S: Quantitative analysis of
HSP90-client interactions reveals principles of substrate
recognition. Cell. 150:987–1001. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Caldas-Lopes E, Cerchietti L, Ahn JH,
Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A,
Guo Y, et al: Hsp90 inhibitor PU-H71, a multimodal inhibitor of
malignancy, induces complete responses in triple-negative breast
cancer models. Proc Natl Acad Sci USA. 106:8368–8373. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Akahane K, Sanda T, Mansour MR, Radimerski
T, DeAngelo DJ, Weinstock DM and Look AT: HSP90 inhibition leads to
degradation of the TYK2 kinase and apoptotic cell death in T-cell
acute lymphoblastic leukemia. Leukemia. 30:219–228. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Georgakis GV, Li Y and Younes A: The heat
shock protein 90 inhibitor 17-AAG induces cell cycle arrest and
apoptosis in mantle cell lymphoma cell lines by depleting cyclin
D1, Akt, Bid and activating caspase 9. Br J Haematol. 135:68–71.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sugimoto K, Sasaki M, Isobe Y, Tsutsui M,
Suto H, Ando J, Tamayose K, Ando M and Oshimi K: Hsp90-inhibitor
geldanamycin abrogates G2 arrest in p53-negative leukemia cell
lines through the depletion of Chk1. Oncogene. 27:3091–3101. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
George P, Bali P, Annavarapu S, Scuto A,
Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P and
Bhalla K: Combination of the histone deacetylase inhibitor LBH589
and the hsp90 inhibitor 17-AAG is highly active against human
CML-BC cells and AML cells with activating mutation of FLT-3.
Blood. 105:1768–1776. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yu C, Kancha RK and Duyster J: Targeting
oncoprotein stability overcomes drug resistance caused by FLT3
kinase domain mutations. PLoS One. 9:e971162014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Al Shaer L, Walsby E, Gilkes A, Tonks A,
Walsh V, Mills K, Burnett A and Rowntree C: Heat shock protein 90
inhibition is cytotoxic to primary AML cells expressing mutant FLT3
and results in altered downstream signalling. Br J Haematol.
141:483–493. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Beghini A, Peterlongo P, Ripamonti CB,
Larizza L, Cairoli R, Morra E and Mecucci C: C-kit mutations in
core binding factor leukemias. Blood. 95:726–727. 2000.PubMed/NCBI
|
|
83
|
Tsujimura A, Kiyoi H, Shiotsu Y, Ishikawa
Y, Mori Y, Ishida H, Toki T, Ito E and Naoe T: Selective KIT
inhibitor KI-328 and HSP90 inhibitor show different potency against
the type of KIT mutations recurrently identified in acute myeloid
leukemia. Int J Hematol. 92:624–633. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Barnes DJ, De S, van Hensbergen P,
Moravcsik E and Melo JV: Different target range and cytotoxic
specificity of adaphostin and
17-allylamino-17-demethoxygeldanamycin in imatinib-resistant and
sensitive cell lines. Leukemia. 21:421–426. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jin L, Xiao CL, Lu CH, Xia M, Xing GW,
Xiong S, Liu QY, Liu H, Li YC, Ge F, et al: Transcriptomic and
proteomic approach to studying SNX-2112-induced K562 cells
apoptosis and anti-leukemia activity in K562-NOD/SCID mice. FEBS
Lett. 583:1859–1866. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Peng C, Brain J, Hu Y, Goodrich A, Kong L,
Grayzel D, Pak R, Read M and Li S: Inhibition of heat shock protein
90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia
and suppresses leukemic stem cells. Blood. 110:678–685. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Radujkovic A, Schad M, Topaly J, Veldwijk
MR, Laufs S, Schultheis BS, Jauch A, Melo JV, Fruehauf S and Zeller
WJ: Synergistic activity of imatinib and 17-AAG in
imatinib-resistant CML cells overexpressing BCR-ABL-Inhibition of
P-glycoprotein function by 17-AAG. Leukemia. 19:1198–1206. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tauchi T, Okabe S, Ashihara E, Kimura S,
Maekawa T and Ohyashiki K: Combined effects of novel heat shock
protein 90 inhibitor NVP-AUY922 and nilotinib in a random
mutagenesis screen. Oncogene. 30:2789–2797. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Marubayashi S, Koppikar P, Taldone T,
Abdel-Wahab O, West N, Bhagwat N, Caldas-Lopes E, Ross KN, Gonen M,
Gozman A, et al: HSP90 is a therapeutic target in JAK2-dependent
myeloproliferative neoplasms in mice and humans. J Clin Invest.
120:3578–3593. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hertlein E, Wagner AJ, Jones J, Lin TS,
Maddocks KJ, Towns WH III, Goettl VM, Zhang X, Jarjoura D, Raymond
CA, et al: 17-DMAG targets the nuclear factor-kappaB family of
proteins to induce apoptosis in chronic lymphocytic leukemia:
Clinical implications of HSP90 inhibition. Blood. 116:45–53. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Walsby E, Pearce L, Burnett AK, Fegan C
and Pepper C: The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-kB
signaling, overcomes microenvironmental cytoprotection and is
highly synergistic with fludarabine in primary CLL cells.
Oncotarget. 3:525–534. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Trentin L, Frasson M, Donella-Deana A,
Frezzato F, Pagano MA, Tibaldi E, Gattazzo C, Zambello R, Semenzato
G and Brunati AM: Geldanamycin-induced Lyn dissociation from
aberrant Hsp90-stabilized cytosolic complex is an early event in
apoptotic mechanisms in B-chronic lymphocytic leukemia. Blood.
112:4665–4674. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen TL, Gupta N, Lehman A, Ruppert AS, Yu
L, Oakes CC, Claus R, Plass C, Maddocks KJ, Andritsos L, et al:
Hsp90 inhibition increases SOCS3 transcript and regulates migration
and cell death in chronic lymphocytic leukemia. Oncotarget.
7:28684–28696. 2016.PubMed/NCBI
|
|
94
|
Gao L and Harhaj EW: HSP90 protects the
human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from
proteasomal degradation to support NF-kB activation and HTLV-1
replication. J Virol. 87:13640–13654. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Taniguchi H, Hasegawa H, Sasaki D, Ando K,
Sawayama Y, Imanishi D, Taguchi J, Imaizumi Y, Hata T, Tsukasaki K,
et al: Heat shock protein 90 inhibitor NVP-AUY922 exerts potent
activity against adult T-cell leukemia-lymphoma cells. Cancer Sci.
105:1601–1608. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kurashina R, Ohyashiki JH, Kobayashi C,
Hamamura R, Zhang Y, Hirano T and Ohyashiki K: Anti-proliferative
activity of heat shock protein (Hsp) 90 inhibitors via
beta-catenin/TCF7L2 pathway in adult T cell leukemia cells. Cancer
Lett. 284:62–70. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ikebe E, Kawaguchi A, Tezuka K, Taguchi S,
Hirose S, Matsumoto T, Mitsui T, Senba K, Nishizono A, Hori M, et
al: Oral administration of an HSP90 inhibitor, 17-DMAG, intervenes
tumor-cell infiltration into multiple organs and improves survival
period for ATL model mice. Blood Cancer J. 3:e1322013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Okawa Y, Hideshima T, Steed P, Vallet S,
Hall S, Huang K, Rice J, Barabasz A, Foley B, Ikeda H, et al:
SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell
growth, angiogenesis, and osteoclastogenesis in multiple myeloma
and other hematologic tumors by abrogating signaling via Akt and
ERK. Blood. 113:846–855. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Nakashima T, Ishii T, Tagaya H, Seike T,
Nakagawa H, Kanda Y, Akinaga S, Soga S and Shiotsu Y: New molecular
and biological mechanism of antitumor activities of KW-2478, a
novel nonansamycin heat shock protein 90 inhibitor, in multiple
myeloma cells. Clin Cancer Res. 16:2792–2802. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
McCaig AM, Cosimo E, Leach MT and Michie
AM: Dasatinib inhibits B cell receptor signalling in chronic
lymphocytic leukaemia but novel combination approaches are required
to overcome additional pro-survival microenvironmental signals. Br
J Haematol. 153:199–211. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lin K, Rockliffe N, Johnson GG,
Sherrington PD and Pettitt AR: Hsp90 inhibition has opposing
effects on wild-type and mutant p53 and induces p21 expression and
cytotoxicity irrespective of p53/ATM status in chronic lymphocytic
leukaemia cells. Oncogene. 27:2445–2455. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Best OG, Singh N, Forsyth C and Mulligan
SP: The novel Hsp-90 inhibitor SNX7081 is significantly more potent
than 17-AAG against primary CLL cells and a range of haematological
cell lines, irrespective of lesions in the TP53 pathway. Br J
Haematol. 151:185–188. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Best OG, Che Y, Singh N, Forsyth C,
Christopherson RI and Mulligan SP: The Hsp90 inhibitor SNX-7081
synergizes with and restores sensitivity to fludarabine in chronic
lymphocytic leukemia cells with lesions in the TP53 pathway: A
potential treatment strategy for fludarabine refractory disease.
Leuk Lymphoma. 53:1367–1375. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Weigert O, Lane AA, Bird L, Kopp N, Chapuy
B, van Bodegom D, Toms AV, Marubayashi S, Christie AL, McKeown M,
et al: Genetic resistance to JAK2 enzymatic inhibitors is overcome
by HSP90 inhibition. J Exp Med. 209:259–273. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ghia P, Chiorazzi N and Stamatopoulos K:
Microenvironmental influences in chronic lymphocytic leukaemia: The
role of antigen stimulation. J Intern Med. 264:549–562. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Newman B, Liu Y, Lee HF, Sun D and Wang Y:
HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells.
Cancer Res. 72:4551–4561. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kim HB, Lee SH, Um JH, Kim MJ, Hyun SK,
Gong EJ, Oh WK, Kang CD and Kim SH: Sensitization of
chemo-resistant human chronic myeloid leukemia stem-like cells to
Hsp90 inhibitor by SIRT1 inhibition. Int J Biol Sci. 11:923–934.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Born EJ, Hartman SV and Holstein SA:
Targeting HSP90 and monoclonal protein trafficking modulates the
unfolded protein response, chaperone regulation and apoptosis in
myeloma cells. Blood Cancer J. 3:e1672013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Huston A, Leleu X, Jia X, Moreau AS, Ngo
HT, Runnels J, Anderson J, Alsayed Y, Roccaro A, Vallet S, et al:
Targeting Akt and heat shock protein 90 produces synergistic
multiple myeloma cell cytotoxicity in the bone marrow
microenvironment. Clin Cancer Res. 14:865–874. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ishii T, Seike T, Nakashima T, Juliger S,
Maharaj L, Soga S, Akinaga S, Cavenagh J, Joel S and Shiotsu Y:
Anti-tumor activity against multiple myeloma by combination of
KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J.
2:e682012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chatterjee M, Andrulis M, Stühmer T,
Müller E, Hofmann C, Steinbrunn T, Heimberger T, Schraud H,
Kressmann S, Einsele H and Bargou RC: The PI3K/Akt signaling
pathway regulates the expression of Hsp70, which critically
contributes to Hsp90-chaperone function and tumor cell survival in
multiple myeloma. Haematologica. 98:1132–1141. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kaiser M, Lamottke B, Mieth M, Jensen MR,
Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I,
Türkmen S and Sezer O: Synergistic action of the novel HSP90
inhibitor NVP-AUY922 with histone deacetylase inhibitors,
melphalan, or doxorubicin in multiple myeloma. Eur J Haematol.
84:337–344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Francis LK, Alsayed Y, Leleu X, Jia X,
Singha UK, Anderson J, Timm M, Ngo H, Lu G, Huston A, et al:
Combination mammalian target of rapamycin inhibitor rapamycin and
HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has
synergistic activity in multiple myeloma. Clin Cancer Res.
12:6826–6835. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Goldstein RL, Yang SN, Taldone T, Chang B,
Gerecitano J, Elenitoba-Johnson K, Shaknovich R, Tam W, Leonard JP,
Chiosis G, et al: Pharmacoproteomics identifies combinatorial
therapy targets for diffuse large B cell lymphoma. J Clin Invest.
125:4559–4571. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Roué G, Pérez-Galan P, Mozos A,
López-Guerra M, Xargay-Torrent S, Rosich L, Saborit-Villarroya I,
Normant E, Campo E and Colomer D: The Hsp90 inhibitor IPI-504
overcomes bortezomib resistance in mantle cell lymphoma in vitro
and in vivo by down-regulation of the prosurvival ER chaperone
BiP/Grp78. Blood. 117:1270–1279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Walsby EJ, Lazenby M, Pepper CJ, Knapper S
and Burnett AK: The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K
and IKK signalling pathways and synergizes with cytarabine in acute
myeloid leukaemia cells. Br J Haematol. 161:57–67. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lazenby M, Hills R, Burnett AK and
Zabkiewicz J: The HSP90 inhibitor ganetespib: A potential effective
agent for Acute Myeloid Leukemia in combination with cytarabine.
Leuk Res. 39:617–624. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mesa RA, Loegering D, Powell HL, Flatten
K, Arlander SJ, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp
JE, et al: Heat shock protein 90 inhibition sensitizes acute
myelogenous leukemia cells to cytarabine. Blood. 106:318–327. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lancet JE, Gojo I, Burton M, Quinn M,
Tighe SM, Kersey K, Zhong Z, Albitar MX, Bhalla K, Hannah AL, et
al: Phase I study of the heat shock protein 90 inhibitor
alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice
weekly to patients with acute myeloid leukemia. Leukemia.
24:699–705. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kaufmann SH, Karp JE, Litzow MR, Mesa RA,
Hogan W, Steensma DP, Flatten KS, Loegering DA, Schneider PA,
Peterson KL, et al: Phase I and pharmacological study of cytarabine
and tanespimycin in relapsed and refractory acute leukemia.
Haematologica. 96:1619–1626. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yong K, Cavet J, Johnson P, Morgan G,
Williams C, Nakashima D, Akinaga S, Oakervee H and Cavenagh J:
phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with
B-cell malignancies. Br J Cancer. 114:7–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Richardson PG, Chanan-Khan AA, Lonial S,
Krishnan AY, Carroll MP, Alsina M, Albitar M, Berman D, Messina M
and Anderson KC: Tanespimycin and bortezomib combination treatment
in patients with relapsed or relapsed and refractory multiple
myeloma: Results of a phase 1/2 study. Br J Haematol. 153:729–740.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Oki Y, Copeland A, Romaguera J, Fayad L,
Fanale M, Faria Sde C, Medeiros LJ, Ivy P and Younes A: Clinical
experience with the heat shock protein-90 inhibitor, tanespimycin,
in patients with relapsed lymphoma. Leuk Lymphoma. 53:990–992.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Oki Y, Younes A, Knickerbocker J,
Samaniego F, Nastoupil L, Hagemeister F, Romaguera J, Fowler N,
Kwak L and Westin J: Experience with HSP90 inhibitor AUY922 in
patients with relapsed or refractory non-Hodgkin lymphoma.
Haematologica. 100:e272–e274. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Maddocks K, Hertlein E, Chen TL, Wagner
AJ, Ling Y, Flynn J, Phelps M, Johnson AJ, Byrd JC and Jones JA: A
phase I trial of the intravenous Hsp90 inhibitor alvespimycin
(17-DMAG) in patients with relapsed chronic lymphocytic
leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 57:2212–2215.
2016. View Article : Google Scholar : PubMed/NCBI
|