Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2018 Volume 40 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 40 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model

  • Authors:
    • Tiejun Chen
    • Bin Li
    • Ye Xu
    • Shuying Meng
    • Yuan Wang
    • Yan Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Medical Oncology, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China, Department of Medical Oncology, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China, Geriatric Department, General Hospital of Benxi Iron and Steel Co., Ltd., Benxi, Liaoning 117000, P.R. China, Translational Medical Laboratory, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China, Translational Medical Laboratory, Benxi Central Hospital, Benxi, Liaoning 117000, P.R. China
  • Pages: 1129-1137
    |
    Published online on: May 21, 2018
       https://doi.org/10.3892/or.2018.6453
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Luteolin was recently demonstrated to suppress tumor growth by interfering with nuclear factor (NF)‑κB activation. As the NF‑κB pathway plays a critical role in muscular atrophy associated with cancer cachexia, we aimed to investigate the potential of luteolin to alleviate cancer‑associated cachexia in a Lewis lung cancer mouse model. C57BL/6 mice were divided into three groups: A control group, a model group and a luteolin group. Mice in the model and luteolin groups received a subcutaneous injection of Lewis lung cancer cells, while the control group received PBS. Subsequently, the tumor mass, serum, gastrocnemius muscle and heart were collected on day 21. The serum, gastrocnemius muscle and heart were weighed and prepared for use in enzyme‑linked immunosorbent assay (ELISA), western blotting (WB) and quantitative reverse transcription polymerase chain reaction (qRT‑PCR) analyses. The results revealed that the tumor‑free body mass was significantly reduced in tumor‑bearing mice compared with that of mice in the other groups. The gastrocnemius muscle mass and heart mass were greater in the luteolin treatment group than in the control group. Tumor necrosis factor (TNF)‑α and interleukin (IL)‑6 levels were lower in the luteolin treatment group than in the model group. In addition, according to the results of the WB and qRT‑PCR analyses, the expression of the E3 ubiquitin ligase muscle RING finger‑containing protein 1 (MuRF1) was downregulated in skeletal muscle and cardiac muscle, whereas atrogin‑1 was downregulated only in skeletal muscle in the luteolin treatment group vs. the model group. Furthermore, IκB kinase β (IKKβ) and phospho‑p65 were significantly downregulated in skeletal muscle and cardiac tissue, whereas the expression of p‑p38 was downregulated only in skeletal muscle in the luteolin treatment group when compared with their expression levels in the model group, as determined by the WB analysis. In conclusion, from the current results, we conclude that luteolin is able to reduce inflammatory burden, downregulate the expression of genes associated with muscle protein breakdown, and protect skeletal and heart muscle from cancer‑induced wasting and loss in vivo. Therefore, luteolin has the potential to be developed into a novel anti‑cachetic agent.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classifi cation of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al: Cachexia: A new definition. Clin Nutr. 27:793–799. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Bilir C, Engin H, Can M, Temi YB and Demirtas D: The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med Oncol. 32:562015. View Article : Google Scholar : PubMed/NCBI

5 

Vaughan VC, Martin P and Lewandowski PA: Cancer cachexia: impact, mechanisms and emerging treatments. J Cachexia Sarcopenia Muscle. 4:95–100. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 89:381–410. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 16:153–166. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G and Dueñas-González A: Understanding tumor anabolism and patient catabolism in cancer-associated cachexia. Am J Cancer Res. 7:1107–1135. 2017.PubMed/NCBI

9 

Li H, Malhotra S and Kumar A: Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med. 86:1113–1126. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB and Bossola M: Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 46:191–197. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, et al: NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol. 178:1059–1068. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Tuorkey MJ: Molecular targets of luteolin in cancer. Eur J Cancer Prev. 25:65–76. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Weng Z, Patel AB, Vasiadi M, Therianou A and Theoharides TC: Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS One. 9:e907392014. View Article : Google Scholar : PubMed/NCBI

14 

Merriman RL, Shackelford KA, Tanzer LR, Campbell JB, Bemis KG and Matsumoto K: Drug treatments for metastasis of the Lewis lung carcinoma: lack of correlation between inhibition of lung metastasis and survival. Cancer Res. 49:4509–4516. 1989.PubMed/NCBI

15 

Au ED, Desai AP, Koniaris LG and Zimmers TA: The MEK-inhibitor selumetinib attenuates tumor growth and reduces IL-6 expression but does not protect against muscle wasting in Lewis lung cancer cachexia. Front Physiol. 7:6822017. View Article : Google Scholar : PubMed/NCBI

16 

Chen X, Wu Y, Yang T, Wei M, Wang Y, Deng X, Shen C, Li W, Zhang H, Xu W, et al: Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. J Cachexia Sarcopenia Muscle. 7:225–232. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Todorov P, Cariuk P, McDevitt T, Coles B, Fearon K and Tisdale M: Characterization of a cancer cachectic factor. Nature. 379:739–742. 1996. View Article : Google Scholar : PubMed/NCBI

18 

Albrecht JT and Canada TW: Cachexia and anorexia in malignancy. Hematol Oncol Clin North Am. 10:791–800. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Mueller TC, Bachmann J, Prokopchuk O, Friess H and Martignoni ME: Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia - can findings from animal models be translated to humans? BMC Cancer. 16:752016. View Article : Google Scholar : PubMed/NCBI

20 

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ and Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E and Glass DJ: The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 6:376–385. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Carson JA and Baltgalvis KA: Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev. 38:168–176. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Sun M, Ye Y, Xiao L, Duan X, Zhang Y and Zhang H: Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med. 39:507–518. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Li B, Wan L, Li Y, Yu Q, Chen P, Gan R, Yang Q, Han Y and Guo C: Baicalin, a component of Scutellaria baicalensis, alleviates anorexia and inhibits skeletal muscle atrophy in experimental cancer cachexia. Tumour Biol. 35:12415–12425. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Van Gammeren D, Damrauer JS, Jackman RW and Kandarian SC: The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J. 23:362–370. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE, Rodriguez JE, Glass DJ and Patterson C: Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol. 296:H997–H1006. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Egerman MA and Glass DJ: Signaling pathways controlling skeletal muscle mass. Cric Rev Biochem Mol Biol. 49:59–68. 2014. View Article : Google Scholar

30 

Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD and Bodine SC: The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 295:E785–E797. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395–403. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Sacheck JM, Ohtsuka A, McLary SC and Goldberg AL: IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab. 287:E591–E601. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen T, Li B, Xu Y, Meng S, Wang Y and Jiang Y: Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model. Oncol Rep 40: 1129-1137, 2018.
APA
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., & Jiang, Y. (2018). Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model. Oncology Reports, 40, 1129-1137. https://doi.org/10.3892/or.2018.6453
MLA
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., Jiang, Y."Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model". Oncology Reports 40.2 (2018): 1129-1137.
Chicago
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., Jiang, Y."Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model". Oncology Reports 40, no. 2 (2018): 1129-1137. https://doi.org/10.3892/or.2018.6453
Copy and paste a formatted citation
x
Spandidos Publications style
Chen T, Li B, Xu Y, Meng S, Wang Y and Jiang Y: Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model. Oncol Rep 40: 1129-1137, 2018.
APA
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., & Jiang, Y. (2018). Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model. Oncology Reports, 40, 1129-1137. https://doi.org/10.3892/or.2018.6453
MLA
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., Jiang, Y."Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model". Oncology Reports 40.2 (2018): 1129-1137.
Chicago
Chen, T., Li, B., Xu, Y., Meng, S., Wang, Y., Jiang, Y."Luteolin reduces cancer‑induced skeletal and cardiac muscle atrophy in a Lewis lung cancer mouse model". Oncology Reports 40, no. 2 (2018): 1129-1137. https://doi.org/10.3892/or.2018.6453
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team