Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1

  • Authors:
    • Xiaowei Diao
    • Xiubin Chen
    • Yurui Pi
    • Yu Zhang
    • Fangfang Wang
    • Ping Liu
    • Yanhong Gao
    • Xiaojun Wang
    • Sijun Yang
    • Shan Lu
  • View Affiliations

  • Published online on: June 18, 2018     https://doi.org/10.3892/or.2018.6503
  • Pages: 1174-1184
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Erythropoietin‑producing hepatocellular carcinoma cell surface type‑A receptor 3 (EPHA3) has been found to promote the proliferation and survival of prostate cancer (PCa) cell lines and prostate tumor development in nude mice. However, the regulation of EPHA3 in PCa remains largely unknown. This study is aimed to investigate the association between EPHA3 expression and androgen receptor (AR) signaling and the potential mechanism. We determined mRNA and protein levels of EPHA3 and AR signaling‑related genes in the PCa cell line 22Rv1 by reverse transcription‑polymerase chain reaction (RT‑PCR) and western blotting, respectively. The EPHA3 mRNA and protein levels were both found to be elevated by dihydrotestosterone (DHT) hormone in a dose‑ and time‑dependent manner, as AR and prostate‑specific antigen (PSA) expression were increased. Similarly, EPHA3 protein levels were also increased in the PCa cell line LNCaP stimulated with DHT or mibolerone (Mib). Overexpression of pEGFP‑AR in 22Rv1 cells significantly increased the EphA3 level, while AR knockdown with small interfering RNA (siRNA) for AR (siAR) markedly decreased the expression of EPHA3. The key EPHA3 promoter region associated with AR regulation was evaluated by co‑transfection of various pGL3‑basic‑luciferase reporter plasmids, containing EPHA3 core promoter fragments differing in length, with the AR plasmid or siAR into 22Rv1 cells. AR overexpression in 22Rvl cells raised the EphA3 promoter transcription activity of pGL3‑EPHA3‑Luc (EPHA3‑Luc)‑789, and vice versa. Similarly, luciferase activity of EPHA3‑Luc‑317 was also clearly affected. However, truncated EPHA3‑Luc‑237 without the transcription factor specific protein 1 (SP1) binding sites or EPHA3‑Luc‑789ΔSP1 with modified SP1 binding sites clearly decreased EPHA3 promoter activity regardless of whether AR was overexpressed or blocked. Treatment of 22Rv1 cells with 10 and 100 nM of the SP1 inhibitor mithramycin A for 24 and 48 h significantly reduced EPHA3 mRNA and protein levels. Additionally, selective inhibition of SP1 with siRNA SP1 (siSP1) at various concentration from 25 to 75 nM, reduced the EPHA3 protein level in PCa LNCaP cells, accordingly. Co‑immunoprecipitation (co‑IP) and chromatin IP (ChIP) assays were performed to determine whether AR forms a transcription factor complex with Sp1 that binds the EPHA3 core promoter region to sense androgen induction. The result suggests that the interaction of AR and SP1 contributes to regulate EPHA3 expression, and the SP1 binding sites (‑295~‑261) in the EPHA3 core promoter region is crucial to the regulation of EPHA3 expression in response to androgen hormone stimuli.

References

1 

Hood G, Laufer-Amorim R, Fonseca-Alves CE and Palmieri C: Overexpression of ephrin A3 receptor in canine prostatic carcinoma. J Comp Pathol. 154:180–185. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Xi HQ, Wu XS, Wei B and Chen L: Aberrant expression of EphA3 in gastric carcinoma: Correlation with tumor angiogenesis and survival. J Gastroenterol. 47:785–794. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K and Kawano T: High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol. 17:82017. View Article : Google Scholar : PubMed/NCBI

4 

Tímár J, Mészáros L, Ladányi A, Puskás LG and Rásó E: Melanoma genomics reveals signatures of sensitivity to bio- and targeted therapies. Cell Immunol. 244:154–157. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Caivano A, La Rocca F, Laurenzana I, Annese T, Tamma R, Famigliari U, Simeon V, Trino S, De Luca L, Villani O, et al: Epha3 acts as proangiogenic factor in multiple myeloma. Oncotarget. 8:34298–34309. 2017. View Article : Google Scholar : PubMed/NCBI

6 

La Rocca F, Airoldi I, Di Carlo E, Marotta P, Falco G, Simeon V, Laurenzana I, Trino S, De Luca L, Todoerti K, et al: EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells. Cell Oncol. 40:483–496. 2017. View Article : Google Scholar

7 

Lu CY, Yang ZX, Zhou L, Huang ZZ, Zhang HT, Li J, Tao KS and Xie BZ: High levels of EphA3 expression are associated with high invasive capacity and poor overall survival in hepatocellular carcinoma. Oncol Rep. 30:2179–2186. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, Jamieson PR, Bruce ZC, Lim YC, Offenhäuser C, et al: EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 23:238–248. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Li M, Yang C, Liu X, Yuan L, Zhang F, Wang M, Miao D, Gu X, Jiang S, Cui B, et al: EphA3 promotes malignant transformation of colorectal epithelial cells by upregulating oncogenic pathways. Cancer Lett. 383:195–203. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, et al: Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 21:7011–7026. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Swords RT, Greenberg PL, Wei AH, Durrant S, Advani AS, Hertzberg MS, Jonas BA, Lewis ID, Rivera G, Gratzinger D, et al: KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study. Leuk Res. 50:123–131. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Ferluga S, Tomé CM, Herpai DM, D'Agostino R and Debinski W: Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget. 7:59860–59876. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Charmsaz S, Al-Ejeh F, Yeadon TM, Miller KJ, Smith FM, Stringer BW, Moore AS, Lee FT, Cooper LT, Stylianou C, et al: EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia. 31:1779–1787. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Janes PW, Slape CI, Farnsworth RH, Atapattu L, Scott AM and Vail ME: EphA3 biology and cancer. Growth Factors. 32:176–189. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Lodola A, Giorgio C, Incerti M, Zanotti I and Tognolini M: Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem. 142:152–162. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C and Boyd AW: Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer. 48:753–762. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Xi HQ and Zhao P: Clinicopathological significance and prognostic value of EphA3 and CD133 expression in colorectal carcinoma. J Clin Pathol. 64:498–503. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Andretta E, Cartón-García F, Martínez-Barriocanal Á, de Marcondes PG, Jimenez-Flores LM, Macaya I, Bazzocco S, Bilic J, Rodrigues P, Nieto R, et al: Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci Rep. 7:415762017. View Article : Google Scholar : PubMed/NCBI

19 

Vecchi M, Confalonieri S, Nuciforo P, Viganò MA, Capra M, Bianchi M, Nicosia D, Bianchi F, Galimberti V, Viale G, et al: Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene. 27:2148–2158. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Clifford N, Smith LM, Powell J, Gattenlöhner S, Marx A and O'Connor R: The EphA3 receptor is expressed in a subset of rhabdomyosarcoma cell lines and suppresses cell adhesion and migration. J Cell Biochem. 105:1250–1259. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Chiappalupi S, Riuzzi F, Fulle S, Donato R and Sorci G: Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis. 35:2382–2392. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhuang G, Song W, Amato K, Hwang Y, Lee K, Boothby M, Ye F, Guo Y, Shyr Y, Lin L, et al: Effects of cancer-associated EPHA3 mutations on lung cancer. J Natl Cancer Inst. 104:1182–1197. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Peng J, Wang Q, Liu H, Ye M, Wu X and Guo L: EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour Biol. 37:11959–11971. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M and Vogt T: Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem. 50:490–499. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Vail ME, Murone C, Tan A, Hii L, Abebe D, Janes PW, Lee FT, Baer M, Palath V, Bebbington C, et al: Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res. 74:4470–4481. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Fox BP, Tabone CJ and Kandpal RP: Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines. Biochem Biophys Res Commun. 342:1263–1272. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Wu R, Wang H, Wang J, Wang P, Huang F, Xie B, Zhao Y, Li S and Zhou J: EphA3, induced by PC-1/PrLZ, contributes to the malignant progression of prostate cancer. Oncol Rep. 32:2657–2665. 2014. View Article : Google Scholar : PubMed/NCBI

28 

World Health Organization: Global battle against cancer won't be won with treatment alone-effective prevention measures urgently needed to prevent cancer crisis. Cent Eur J Public Health. 22:23–28. 2014.PubMed/NCBI

29 

Roviello G, Sigala S, Sandhu S, Bonetta A, Cappelletti MR, Zanotti L, Bottini A, Sternberg CN, Fox SB and Generali D: Role of the novel generation of androgen receptor pathway targeted agents in the management of castration-resistant prostate cancer: A literature based meta-analysis of randomized trials. Eur J Cancer. 61:111–121. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Komura K, Jeong SH, Hinohara K, Qu F, Wang X, Hiraki M, Azuma H, Lee GS, Kantoff PW and Sweeney CJ: Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc Natl Acad Sci USA. 113:6259–6264. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Geynisman DM, Plimack ER and Zibelman M: Second-generation androgen receptor-targeted therapies in nonmetastatic castration-resistant prostate cancer: Effective early intervention or intervening too early? Eur Urol. 70:971–973. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Juang HH, Hsieh ML and Tsui KH: Testosterone modulates mitochondrial aconitase in the full-length human androgen receptor-transfected PC-3 prostatic carcinoma cells. J Mol Endocrinol. 33:121–132. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Zhao H, Zhu C, Qin C, Tao T, Li J, Cheng G, Li P, Cao Q, Meng X, Ju X, et al: Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP. Biochem Biophys Res Commun. 432:320–325. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Lee WS, Kwon J, Yun DH, Lee YN, Woo EY, Park MJ, Lee JS, Han YH and Bae IH: Specificity protein 1 expression contributes to Bcl-w-induced aggressiveness in glioblastoma multiforme. Mol Cells. 37:17–23. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Simon P: Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics. 19:1439–1440. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Dottori M, Down M, Hüttmann A, Fitzpatrick DR and Boyd AW: Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood. 94:2477–2486. 1999.PubMed/NCBI

37 

Liao X, Tang S, Thrasher JB, Griebling TL and Li B: Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther. 4:505–515. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Boyd AW, Ward LD, Wicks IP, Simpson RJ, Salvaris E, Wilks A, Welch K, Loudovaris M, Rockman S and Busmanis I: Isolation and characterization of a novel receptor-type protein tyrosine kinase (hek) from a human pre-B cell line. J Biol Chem. 267:3262–3267. 1992.PubMed/NCBI

39 

Pasquale EB: Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A and Kato S: The androgen receptor in health and disease. Annu Rev Physiol. 75:201–224. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Vizcaíno C, Mansilla S and Portugal J: Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther. 152:111–124. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Beishline K and Azizkhan-Clifford J: Sp1 and the ‘hallmarks of cancer’. FEBS J. 282:224–258. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Safe S, Imanirad P, Sreevalsan S, Nair V and Jutooru I: Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opin Ther Targets. 18:759–769. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Sankpal UT, Goodison S, Abdelrahim M and Basha R: Targeting Sp1 transcription factors in prostate cancer therapy. Med Chem. 7:518–525. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Eisermann K, Broderick CJ, Bazarov A, Moazam MM and Fraizer GC: Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol Cancer. 12:72013. View Article : Google Scholar : PubMed/NCBI

46 

Lu S, Jenster G and Epner DE: Androgen induction of cyclin-dependent kinase inhibitor p21 gene: Role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol. 14:753–760. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, Pretlow TG and Kung HJ: Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res. 62:6606–6614. 2002.PubMed/NCBI

48 

Attardi BJ, Burgenson J, Hild SA and Reel JR: Steroid hormonal regulation of growth, prostate specific antigen secretion, and transcription mediated by the mutated androgen receptor in CWR22Rv1 human prostate carcinoma cells. Mol Cell Endocrinol. 222:121–132. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Li Y, Hwang TH, Oseth LA, Hauge A, Vessella RL, Schmechel SC, Hirsch B, Beckman KB, Silverstein KA and Dehm SM: AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene. 31:4759–4767. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD, Johansson SL, Lin MF and Batra SK: Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett. 259:28–38. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Yuan TC, Veeramani S and Lin MF: Neuroendocrine-like prostate cancer cells: Neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer. 14:531–547. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Bao BY, Chuang BF, Wang Q, Sartor O, Balk SP, Brown M, Kantoff PW and Lee GS: Androgen receptor mediates the expression of UDP-glucuronosyltransferase 2 B15 and B17 genes. Prostate. 68:839–848. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Wang Y, Wang Y, Liu Q, Xu G, Mao F, Qin T, Teng H, Cai W, Yu P, Cai T, et al: Comparative RNA-seq analysis reveals potential mechanisms mediating the conversion to androgen independence in an LNCaP progression cell model. Cancer Lett. 342:130–138. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Chen CD and Sawyers CL: NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 22:2862–2870. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2018
Volume 40 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Diao, X., Chen, X., Pi, Y., Zhang, Y., Wang, F., Liu, P. ... Lu, S. (2018). Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1. Oncology Reports, 40, 1174-1184. https://doi.org/10.3892/or.2018.6503
MLA
Diao, X., Chen, X., Pi, Y., Zhang, Y., Wang, F., Liu, P., Gao, Y., Wang, X., Yang, S., Lu, S."Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1". Oncology Reports 40.2 (2018): 1174-1184.
Chicago
Diao, X., Chen, X., Pi, Y., Zhang, Y., Wang, F., Liu, P., Gao, Y., Wang, X., Yang, S., Lu, S."Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1". Oncology Reports 40, no. 2 (2018): 1174-1184. https://doi.org/10.3892/or.2018.6503