Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma

  • Authors:
    • Hong Yang
    • Peng Lin
    • Hua‑Yu Wu
    • Hai‑Yuan Li
    • Yun He
    • Yi‑Wu Dang
    • Gang Chen
  • View Affiliations

  • Published online on: September 18, 2018     https://doi.org/10.3892/or.2018.6715
  • Pages: 3346-3358
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

As one of the most lethal malignancies worldwide, hepatocellular carcinoma (HCC) has a high mortality rate, which is mainly due to the complex and multi‑step aberrations in gene expression associated with it. Small nucleolar RNAs (snoRNAs), non‑coding RNAs that are 60‑300 nucleotides in length, have been proposed to be closely associated with numerous human diseases, including HCC. However, the current knowledge regarding their clinical significance and mechanistic roles in HCC is limited. The present study comprehensively analyzed the snoRNA expression profiles in HCC and identified several ones that were dysregulated. The potential regulatory mechanisms of these snoRNAs were assessed via gene functional enrichment analyses. Univariate and multivariate Cox regression analyses were performed to identify snoRNAs that are independently associated with the risk of mortality. Subsequently, a prognostic index (PI) for survival prediction was established, which may serve as a prognostic biomarker for patients with HCC (hazard ratio, 3.023; 95% confidence interval: 1.785‑5.119; P<0.001). In addition, a series of bioinformatics analyses were performed to identify potential differences in the perturbation of pathways between high‑ and low‑risk groups. The PI developed in the present study was determined to have a moderate predictive value regarding the clinical outcome for HCC patients.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Forner A, Reig M and Bruix J: Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Fu J and Wang H: Precision diagnosis and treatment of liver cancer in China. Cancer Lett. 412:283–288. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Bosetti C, Turati F and La Vecchia C: Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol. 28:753–770. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Sherman M: Hepatocellular carcinoma: Epidemiology, surveillance, and diagnosis. Semin Liver Dis. 30:3–16. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Kudo M: Systemic therapy for hepatocellular carcinoma: 2017 update. Oncology. 93 Suppl 1:S135–S146. 2017. View Article : Google Scholar

7 

Costentin CE, Ferrone CR, Arellano RS, Ganguli S, Hong TS and Zhu AX: Hepatocellular carcinoma with macrovascular invasion: Defining the optimal treatment strategy. Liver Cancer. 6:360–374. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Kissel M, Berndt S, Fiebig L, Kling S, Ji Q, Gu Q, Lang T, Hafner FT, Teufel M and Zopf D: Antitumor effects of regorafenib and sorafenib in preclinical models of hepatocellular carcinoma. Oncotarget. 8:107096–107108. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Sherman M: Regorafenib for treatment of hepatocellular carcinoma. Hepatology. 67:1162–1165. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, et al: Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 389:56–66. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Romano G, Veneziano D, Acunzo M and Croce CM: Small non-coding RNA and cancer. Carcinogenesis. 38:485–491. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY and Guo Y: Current research on non-coding ribonucleic acid (RNA). Genes. 8:pii: E3662017. View Article : Google Scholar

13 

Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, Wang W and Qi ZT: Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 13:2162014. View Article : Google Scholar : PubMed/NCBI

14 

Fang X, Yang D, Luo H, Wu S, Dong W, Xiao J, Yuan S, Ni A, Zhang KJ, Liu XY, et al: SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J Mol Cell Biol. 9:243–255. 2017.PubMed/NCBI

15 

Gong J, Li Y, Liu CJ, Xiang Y, Li C, Ye Y, Zhang Z, Hawke DH, Park PK, Diao L, et al: A Pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep. 21:1968–1981. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Yu G, Wang LG, Han Y and He QY: ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, et al: An integrated TCGA Pan-Cancer clinical data resource to drive High-quality survival outcome analytics. Cell. 173:400–416.e11. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Jacob H, Stanisavljevic L, Storli KE, Hestetun KE, Dahl O and Myklebust MP: A four-microRNA classifier as a novel prognostic marker for tumor recurrence in stage II colon cancer. Sci Rep. 8:61572018. View Article : Google Scholar : PubMed/NCBI

19 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Wu L, Chang L, Wang H, Ma W, Peng Q and Yuan Y: Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 42:82–91. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Ma P, Wang H, Han L, Jing W, Zhou X and Liu Z: Up-regulation of small nucleolar RNA 78 is correlated with aggressive phenotype and poor prognosis of hepatocellular carcinoma. Tumour Biol. Oct 21–2016.(Epub ahead of print). View Article : Google Scholar

22 

Reichow SL, Hamma T, Ferré-D'Amaré AR and Varani G: The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35:1452–1464. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Dong Z, Zhu C, Zhan Q and Jiang W: The roles of RRP15 in nucleolar formation, ribosome biogenesis and checkpoint control in human cells. Oncotarget. 8:13240–13252. 2017.PubMed/NCBI

24 

Su H, Xu T, Ganapathy S, Shadfan M, Long M, Huang TH, Thompson I and Yuan ZM: Elevated snoRNA biogenesis is essential in breast cancer. Oncogene. 33:1348–1358. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Russo A, Saide A, Smaldone S, Faraonio R and Russo G: Role of uL3 in multidrug resistance in p53-mutated lung cancer cells. Int J Mol Sci. 18:pii: E5472017. View Article : Google Scholar

26 

Yuan F, Zhang Y, Ma L, Cheng Q, Li G and Tong T: Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. Aging Cell. 16:726–737. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, et al: Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 21:449–456. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Wang Z, Wu Q, Feng S, Zhao Y and Tao C: Identification of four prognostic LncRNAs for survival prediction of patients with hepatocellular carcinoma. PeerJ. 5:e35752017. View Article : Google Scholar : PubMed/NCBI

29 

Liu G, Wang H, Fu JD, Liu JY, Yan AG and Guan YY: A five-miRNA expression signature predicts survival in hepatocellular carcinoma. APMIS. 125:614–622. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Li B, Feng W, Luo O, Xu T, Cao Y, Wu H, Yu D and Ding Y: Development and validation of a three-gene prognostic signature for patients with hepatocellular carcinoma. Sci Rep. 7:55172017. View Article : Google Scholar : PubMed/NCBI

31 

Mannoor K, Liao J and Jiang F: Small nucleolar RNAs in cancer. Biochim Biophys Acta. 1826:121–128. 2012.PubMed/NCBI

32 

Warner WA, Spencer DH, Trissal M, White BS, Helton N, Ley TJ and Link DC: Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2:151–163. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 40 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yang, H., Lin, P., Wu, H., Li, H., He, Y., Dang, Y., & Chen, G. (2018). Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma. Oncology Reports, 40, 3346-3358. https://doi.org/10.3892/or.2018.6715
MLA
Yang, H., Lin, P., Wu, H., Li, H., He, Y., Dang, Y., Chen, G."Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma". Oncology Reports 40.6 (2018): 3346-3358.
Chicago
Yang, H., Lin, P., Wu, H., Li, H., He, Y., Dang, Y., Chen, G."Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma". Oncology Reports 40, no. 6 (2018): 3346-3358. https://doi.org/10.3892/or.2018.6715