Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2019 Volume 41 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 41 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer

  • Authors:
    • Mohamed Ab. Kawan
    • Ioannis Kyrou
    • Manjunath Ramanjaneya
    • Kevin Williams
    • Jeyarooban Jeyaneethi
    • Harpal S. Randeva
    • Emmanouil Karteris
  • View Affiliations / Copyright

    Affiliations: Translational and Experimental Medicine, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK, Department of Urology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK, Biosciences, Department of Life Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
    Copyright: © Kawan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Pages: 1140-1150
    |
    Published online on: November 27, 2018
       https://doi.org/10.3892/or.2018.6893
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glutamine RF‑amide peptide (QRFP) belongs to the RFamide neuropeptide family, which is involved in a wide spectrum of biological activities, ranging from food intake and cardiovascular functioning to analgesia, aldosterone secretion, locomotor activity and reproduction. Recently, QRFP has been demonstrated to exert its effects by activating the G protein‑coupled receptor GPR103. QRFP is expressed in the brain and peripherally in the adipose tissue, bladder, colon, testis, parathyroid and thyroid gland, as well as in the prostate gland. Following lung cancer, prostate cancer constitutes the second most frequently diagnosed cancer among men, whilst obesity appears to be a contributing factor for aggressive prostate cancer. In the present study, we sought to investigate the role of QRFP in prostate cancer, using two androgen‑independent human prostate cancer cell lines (PC3 and DU145) as in vitro experimental models and clinical human prostate cancer samples. The expression of both QRFP and GPR103 at the gene and protein level was higher in human prostate cancer tissue samples compared to control and benign prostatic hyperplasia (BHP) samples. Furthermore, in both prostate cancer cell lines used in the present study, QRFP treatment induced the phosphorylation of ERK1/2, p38, JNK and Akt. In addition, QRFP increased cell migration and invasion in these in vitro models, with the increased expression of MMP2. Furthermore, we demonstrated that the pleiotropic adipokine, leptin, increased the expression of QRFP and GPR103 in PC3 prostate cancer cells via a PI3K‑ and MAPK‑dependent mechanism, indicating a novel potential link between adiposity and prostate cancer. Our findings expand the existing evidence and provide novel insight into the implication of QRFP in prostate cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Findeisen M, Rathmann D and Beck-Sickinger AG: RFamide peptides: Structure, function, mechanisms and pharmaceutical potential. Pharmaceuticals. 4:1248–1280. 2011. View Article : Google Scholar :

2 

Ukena K, Vaudry H, Leprince J and Tsutsui K: Molecular evolution and functional characterization of the orexigenic peptide 26RFa and its receptor in vertebrates. Cell Tissue Res. 343:475–81. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Sandvik GK, Hodne K, Haug TM, Okubo K and Weltzien FA: RFamide peptides in early vertebrate development. Front Endocrinol. 5:2032014. View Article : Google Scholar

4 

Chartrel N, Dujardin C, Anouar Y, Leprince J, Decker A, Clerens S, Do-Régo JC, Vandesande F, Llorens-Cortes C, Costentin J, et al: Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci USA. 100:15247–52. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Bruzzone F, Lectez B, Tollemer H, Leprince J, Dujardin C, Rachidi W, Chatenet D, Baroncini M, Beauvillain JC, Vallarino M, et al: Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord. J Neurochem. 99:616–627. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, Iguchi H, Kawasawa YI, Ikeda Y, Sakakibara I, et al: A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA. 103:7438–7443. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras, Santos J, Tsutsui K, et al: The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol. 174:3573–3607. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, et al: Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem. 278:27652–27657. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Fukusumi S, Yoshida H, Fujii R, Maruyama M, Komatsu H, Habata Y, Shintani Y, Hinuma S and Fujino M: A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem. 278:46387–46395. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Baribault H, Danao J, Gupte J, Yang L, Sun B, Richards W and Tian H: The G-protein-coupled receptor GPR103 regulates bone formation. Mol Cell Biol. 26:709–717. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Moriya R, Sano H, Umeda T, Ito M, Takahashi Y, Matsuda M, Ishihara A, Kanatani A and Iwaasa H: RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology. 147:2916–2922. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Navarro VM, Fernández-Fernández R, Nogueiras R, Vigo E, Tovar S, Chartrel N, Le Marec O, Leprince J, Aguilar E, Pinilla L, et al: Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J Physiol. 573:237–249. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Patel SR, Murphy KG, Thompson EL, Patterson M, Curtis AE, Ghatei MA and Bloom SR: Pyroglutamylated RFamide peptide 43 stimulates the hypothalamic-pituitary-gonadal axis via gonadotropin-releasing hormone in rats. Endocrinology. 149:4747–4754. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Alonzeau J, Alexandre D, Jeandel L, Courel M, Hautot C, El Yamani FZ, Gobet F, Leprince J, Magoul R, Amarti A, et al: The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells. Eur J Cancer. 49:511–519. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Ørsted DD, Bojesen SE, Nielsen SF and Nordestgaard BG: Association of clinical benign prostate hyperplasia with prostate cancer incidence and mortality revisited: A nationwide cohort study of 3,009,258 men. Eur Urol. 60:691–698. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Ervik M, Lam F, Ferlay J, Mery L, Soerjomataram I and Bray F: Cancer Today. Lyon, France: International Agency for Research on Cancer. Cancer Today 2016. http://gco.iarc.fr/todayJanuary 22–2018

17 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawlt O and Bray F: International variation in prostate cancer incidence and mortality rates. Eur Urol. 61:1079–1092. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN Jr and Evans CP: Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis. 10:6–14. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Foster HA, Davies J, Pink RC, Turkcigdem S, Goumenou A, Carter DR, Saunders NJ, Thomas P and Karteris E: The human myometrium differentially expresses mTOR signalling components before and during pregnancy: Evidence for regulation by progesterone. J Steroid Biochem Mol Biol. 139:166–172. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Johnson TR, Khandrika L, Kumar B, Venezia S, Koul S, Chandhoke R, Maroni P, Donohue R, Meacham RB and Koul HK: Focal adhesion kinase controls aggressive phenotype of androgen-independent prostate cancer. Mol Cancer Res. 6:1639–1648. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Chen Y, Xin X, Li J, Xu J, Yu X, Li T, Mo Z and Hu Y: RTK/ERK pathway under natural selection associated with prostate cancer. PLoS One. 8:e782542013. View Article : Google Scholar : PubMed/NCBI

23 

Li WH, Qiu Y, Zhang HQ, Tian XX and Fang WG: P2Y2 receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS One. 10:e01331652015. View Article : Google Scholar : PubMed/NCBI

24 

Ghosh PM, Malik SN, Bedolla RG, Wang Y, Mikhailova M, Prihoda TJ, Troyer DA and Kreisberg JI: Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation. Endocr Relat Cancer. 12:119–134. 2005. View Article : Google Scholar : PubMed/NCBI

25 

McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Bäsecke J, Libra M, Stivala F, Milella M, Tafuri A, et al: Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia. 22:708–722. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Tibbles LA and Woodgett JR: The stress-activated protein kinase pathways. Cell Mol Life Sci. 55:1230–1254. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Ricote M, García-Tuñón I, Fraile B, Fernández C, Aller P, Paniagua R and Royuela M: P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis. 11:1969–1975. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Koul HK, Pal M and Koul S: Role of p38 MAP Kinase signal transduction in solid tumors. Genes Cancer. 4:342–359. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Lotan TL, Lyon M, Huo D, Taxy JB, Brendler C, Foster BA, Stadler W and Rinker-Schaeffer CW: Up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression: An important role for SAPK signalling in prostatic neoplasia. J Pathol. 212:386–394. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yao H, Capodieci P, Wishnow K, Kaplan I, Stork PJ and Loda M: Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab Invest. 76:37–51. 1997.PubMed/NCBI

31 

Boldt S, Weidle UH and Kolch W: The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis. 23:1831–1838. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Xia Z, Dickens M, Raingeaud J, Davis RJ and Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270:1326–1331. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Xu L, Chen S and Bergan RC: MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene. 25:2987–2998. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF and Fang WG: ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett. 215:239–247. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD and Bondada S: c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood. 106:1382–1391. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S and Konishi N: c-Jun NH2-terminal kinase-dependent Fas activation contributes to etoposide-induced apoptosis in p53-mutated prostate cancer cells. Prostate. 55:265–280. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Rodríguez-Berriguete G, Fraile B, Martínez-Onsurbe P, Olmedilla G, Paniagua R and Royuela M: MAP kinases and prostate cancer. J Signal Transduct. 2012:1691702012. View Article : Google Scholar : PubMed/NCBI

38 

Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell. 103:239–252. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344:174–179. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Guo J, Zhu T, Chen L, Nishioka T, Tsuji T, Xiao ZX and Chen CY: Differential sensitization of different prostate cancer cells to apoptosis. Genes Cancer. 1:836–846. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Shukla S, Maclennan GT, Hartman DJ, Fu P, Resnick MI and Gupta S: Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 121:1424–1432. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Toren P and Zoubeidi A: Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (Review). Int J Oncol. 45:1793–1801. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Gan Y, Shi C, Inge L, Hibner M, Balducci J and Huang Y: Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene. 29:4947–4958. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Yao Huang and Yongchang Chang: Epidermal Growth Factor Receptor (EGFR) Phosphorylation, Signaling and Trafficking in Prostate Cancer. Prostate Cancer-From Bench to Bedside. Dr. Philippe E. Spiess (ed). InTech. doi: 10.5772/27021. 2011.

45 

Ding G, Fang J, Tong S, Qu L, Jiang H, Ding Q and Liu J: Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signalling to increase SLUG expression in prostate cancer. Prostate. 75:957–968. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Ljujic M, Mijatovic S, Bulatovic MZ, Mojic M, Maksimovic-Ivanic D, Radojkovic D and Topic A: Alpha-1-antitrypsin antagonizes cisplatin-induced cytotoxicity in prostate cancer (PC3) and melanoma cancer (A375) cell lines. Pathol Oncol Res. 23:335–343. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Rybak AP, Ingram AJ and Tang D: Propagation of human prostate cancer stem-like cells occurs through EGFR-mediated ERK activation. PLoS One. 8:e617162013. View Article : Google Scholar : PubMed/NCBI

48 

Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, Guo L, Liu W, Wang SJ and Yu XG: ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol. 40:1714–1724. 2012.PubMed/NCBI

49 

Moulik S, Pal S, Biswas J and Chatterjee A: Role of ERK in modulating MMP 2 and MMP 9 with respect to tumour invasiveness in human cancer cell line MCF-7 and MDA-MB-231. Journal of Tumor. 2:87–98. 2014.

50 

Yang JL, Lin JH, Weng SW, Chen JC, Yang JS, Amagaya S, Funayana S, Wood WG, Kuo CL and Chung JG: Crude extract of Euphorbia formosana inhibits the migration and invasion of DU145 human prostate cancer cells: The role of matrix metalloproteinase-2/9 inhibition via the MAPK signaling pathway. Mol Med Rep. 7:1403–1408. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Huang X, Chen S, Xu L, Liu Y, Deb DK, Platanias LC and Bergan RC: Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 65:3470–3478. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Oguic R, Mozetič V, Cini Tešar E, Fučkar Čupić D, Mustać E and Dorđević G: Matrix metalloproteinases 2 and 9 immunoexpression in prostate carcinoma at the positive margin of radical prostatectomy specimens. Patholog Res Int 2014. 2621952014.

53 

Trudel D, Fradet Y, Meyer F, Harel F and Têtu B: Significance of MMP-2 expression in prostate cancer: An immunohistochemical study. Cancer Res. 63:8511–8515. 2003.PubMed/NCBI

54 

Kyrou I, Randeva HS and Weickert MO: Clinical Problems Caused by Obesity. De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A: South Dartmouth (MA): MDText.com, Inc.; 2014, Available on Endotext [Internet].

55 

Kyrou I, Mattu HS, Chatha K and Randeva HS; Chapter 7-Fat Hormones, Adipokines, . Schisler JC, Lang CH and Willis MS: Endocrinology of the Heart in Health and Disease. Academic Press. 2017. pp. 167–205. 2017

56 

Alshaker H, Sacco K, Alfraidi A, Muhammad A, Winkler M and Pchejetski D: Leptin signalling, obesity and prostate cancer: Molecular and clinical perspective on the old dilemma. Oncotarget. 6:35556–35563. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Baillargeon J and Rose DP: Obesity, adipokines, and prostate cancer (Review). Int J Oncol. 28:737–745. 2006.PubMed/NCBI

58 

Szyszka M, Tyczewska M, Milecka P, Jopek K, Celichowski P, Malendowicz LK and Rucinski M: Effects of leptin on leptin receptor isoform expression and proliferative activity in human normal prostate and prostate cancer cell lines. Oncol Rep. 39:182–192. 2018.PubMed/NCBI

59 

Hoda MR, Theil G, Mohammed N, Fischer K and Fornara P: The adipocyte-derived hormone leptin has proliferative actions on androgen-resistant prostate cancer cells linking obesity to advanced stages of prostate cancer. J Oncol. 280386:2012.

60 

Onuma M, Bub JD, Rummel TL and Iwamoto Y: Prostate cancer cell-adipocyte interaction: Leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 278:42660–42667. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Miyazaki T, Bub JD and Iwamoto Y: c-Jun NH2-terminal kinase mediates leptin-stimulated androgen-independent prostate cancer cell proliferation via signal transducer and activator of transcription 3 and Akt. Biochim Biophys Acta. 1782:593–604. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kawan MA, Kyrou I, Ramanjaneya M, Williams K, Jeyaneethi J, Randeva HS and Karteris E: Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer. Oncol Rep 41: 1140-1150, 2019.
APA
Kawan, M.A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H.S., & Karteris, E. (2019). Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer. Oncology Reports, 41, 1140-1150. https://doi.org/10.3892/or.2018.6893
MLA
Kawan, M. A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H. S., Karteris, E."Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer". Oncology Reports 41.2 (2019): 1140-1150.
Chicago
Kawan, M. A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H. S., Karteris, E."Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer". Oncology Reports 41, no. 2 (2019): 1140-1150. https://doi.org/10.3892/or.2018.6893
Copy and paste a formatted citation
x
Spandidos Publications style
Kawan MA, Kyrou I, Ramanjaneya M, Williams K, Jeyaneethi J, Randeva HS and Karteris E: Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer. Oncol Rep 41: 1140-1150, 2019.
APA
Kawan, M.A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H.S., & Karteris, E. (2019). Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer. Oncology Reports, 41, 1140-1150. https://doi.org/10.3892/or.2018.6893
MLA
Kawan, M. A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H. S., Karteris, E."Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer". Oncology Reports 41.2 (2019): 1140-1150.
Chicago
Kawan, M. A., Kyrou, I., Ramanjaneya, M., Williams, K., Jeyaneethi, J., Randeva, H. S., Karteris, E."Involvement of the glutamine RF‑amide peptide and its cognate receptor GPR103 in prostate cancer". Oncology Reports 41, no. 2 (2019): 1140-1150. https://doi.org/10.3892/or.2018.6893
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team