|
1
|
Sanduja S, Blanco FF, Young LE, Kaza V and
Dixon DA: The role of tristetraprolin in cancer and inflammation.
Front Biosci. 17:174–88. 2012. View
Article : Google Scholar :
|
|
2
|
Sanduja S, Blanco FF and Dixon DA: The
roles of TTP and BRF proteins in regulated mRNA decay. Wiley
Interdiscip Rev RNA. 2:42–57. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xu L, Ning H, Gu L, Wang Q, Lu W, Peng H,
Cui W, Ying B, Ross CR, Wilson GM, et al: Tristetraprolin induces
cell cylces arrest in breast tumor cell through targeting
AP-1/c-Jun and NF-κB pathway. Oncotarget. 6:41679–41691. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yoon NA, Jo HG, Lee UH, Park JH, Yoon JE,
Ryu JY, Kang SS, Min YJ, Ju SA, Seo EH, et al: Tristetraprolin
suppresses the EMT through the down-regulation of Twist1 and Snail1
in cancer cells. Oncotarget. 7:8931–8943. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sohn BH, Park IY, Lee JJ, Yang SJ, Jang
YJ, Park KC, Kim DJ, Lee DC, Sohn HA, Kim TW, et al: Functional
switching of TGF-beta1 signaling in liver cancer via epigenetic
modulation of a single CpG Site in TTP promoter. Gastroenterology.
138:1898–1908. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sobolewski C, Sanduja S, Blanco FF, Hu L
and Dixon DA: Histone deacetylase inhibitors activate
tristetraprolin expression through induction of early growth
response protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules.
5:2035–2055. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zheng XT, Xiao XQ and Dai JJ: Sodium
butyrate down-regulates tristetraprolin-mediated cyclin B1
expression independent of the formation of processing bodies. Int J
Biochem Cell Biol. 69:241–248. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tran DD, Koch A, Allister A, Saran S,
Ewald F, Kock M, Nashan B and Tamura T: Treatment with MAPKAP2
(MK2) inhibitor and DNA methylation inhibitor, 5-aza dC,
synergistically triggers apoptosis in hepatocellular carcinoma
(HCC) via tristetraprolin (TTP). Cell Signal. 28:1872–1880. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Laird PW: Cancer epigenetics. Hum Mol
Genet. 14:R65–R76. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Su LJ, Mahabir S, Ellison GL, McGuinn LA
and Reid BC: Epigenetic contributions to the relationship between
cancer and dietary intake of nutrients, bioactive food components,
and environmental toxicants. Front Genet. 2:912012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ferguson-Smith AC and Greally JM:
Epigenetics: Perceptive enzymes. Nature. 449:148–149. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Meeran SM, Ahmed A and Tollefsbol TO:
Epigenetic targets of bioactive dietary components for cancer
prevention and therapy. Clin Epigenetics. 1:101–116. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Suzuki H, Itoh F, Toyota M, Kikuchi T,
Kakiuchi H, Hinoda Y and Imai K: Distinct methylation pattern and
microsatellite instability in sporadic gastric cancer. Int J
Cancer. 83:309–313. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Herman JG, Latif F, Weng Y, Lerman MI,
Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al:
Silencing of the VHL tumor-suppressor gene by DNA methylation in
renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Herman JG, Umar A, Polyak K, Graff JR,
Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW,
et al: Incidence and functional consequences of hMLH1
promoter hypermethylation in colorectal carcinoma. Proc Natl Acad
Sci USA. 95:6870–6875. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Delmas D, Lancon A, Colin D, Jannin B and
Latruffe N: Resveratrol as a chemopreventive agent: A promising
molecule for fighting cancer. Curr Drug Targets. 7:423–442. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ryu J, Yoon NA, Seong H, Jeong JY, Kang S,
Park NM, Choi JI, Lee DH, Roh GS, Kim HJ, et al: Resveratrol
induces glioma cell apoptosis through activation of
tristetraprolin. Mol Cells. 38:991–997. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ,
Leem SH and Kim SM: Tristetraprolin activation by resveratrol
inhibits the proliferation and metastasis of colorectal cancer
cells. Int J Oncol. 53:1269–1278. 2018.PubMed/NCBI
|
|
19
|
Kim WT, Jin H, Lee SR, Kim SZ, Leem SH and
Kim SM: Mediation of the anticancer effect of resveratrol via the
upregulation tristetraprolin in gastric cancer cell. Med Chem.
8:29–37. 2018.
|
|
20
|
Li C, Tang C and He G: Tristetraprolin: A
novel mediator of the anticancer properties of resveratrol. Genet
Mol Res. 15:2016.doi: 10.4238/gmr.15027213.
|
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2ΔΔCT method. Methods.
25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
DuBois RN, McLane MW, Ryder K, Lau LF and
Nathans D: A growth factor-inducible nuclear protein with a novel
cysteine/histidine repetitive sequence. J Biol Chem.
265:19185–19191. 1990.PubMed/NCBI
|
|
23
|
Varnum BC, Ma QF, Chi TH, Fletcher B and
Herschman HR: The TIS11 primary response gene is a member of a gene
family that encodes proteins with a highly conserved sequence
containing an unusual Cys-His repeat. Mol Cell Biol. 11:1754–1758.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cao H, Deterding LJ and Blackshear PJ:
Phosphorylation site analysis of the anti-inflammatory and
mRNA-destabilizing protein tristetraprolin. Expert Rev Proteomics.
4:711–726. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bakheet T, Frevel M, Williams BR, Greer W
and Khabar KS: Ared (Human au-rich element-containing mRNA database
reveals an unexpectedly diverse functional repertoire of encoded
proteins). Nucleic Acids Res. 29:246–254. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen CY and Shyu AB: AU-rich elements:
Characterization and importance in mRNA degradation. Trends Biochem
Sci. 20:465–470. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hau HH, Walsh RJ, Ogilvie RL, Williams DA,
Reilly CS and Bohjanen PR: Tristetraprolin recruits functional mRNA
decay complexes to ARE sequences. J Cell Biochem. 100:1477–1492.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lee HH, Son YJ, Lee WH, Park YW, Chae SW,
Cho WJ, Kim YM, Choi HJ, Choi DH, Jung SW, et al: Tristetraprolin
regulates expression of VEGF and tumorigenesis in human colon
cancer. Int J Cancer. 126:1817–1827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Marderosian M, Sharma A, Funk AP,
Vartanian R, Masri J, Jo OD and Gera JF: Tristetraprolin regulates
Cyclin D1 and c-Myc mRNA stability in response to rapamycin
in an Akt-dependent manner via p38 MAPK signaling. Oncogene.
25:6277–6290. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Essafi-Benkhadir K, Onesto C, Stebe E,
Monori C and Pagès G: Tristetraprolin inhibits Ras-dependent tumor
vascularization by inducing vascular endothelial growth factor mRNA
degradation. Mol Biol Cell. 18:4648–4658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Suswam E, Li Y, Zhang X, Gillespie GY, Li
X, Shacka JJ, Lu L, Zheng L and King PH: Tristetraprolin
downregulates interleukin 8 and vascular endothelial growth factor
in malignant glioma cells. Cancer Res. 68:674–682. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Young LE, Sanduja S, Bemis-Standoli K,
Pena EA, Price RL and Dixon DA: The mRNA binding proteins HuR and
tristetraprolin regulate cyclooxygenase 2 expression during colon
carcinogenesis. Gastroenterology. 136:1669–1679. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Anderson P: Post-transcriptional control
of cytokine production. Nat Immunol. 9:353–359. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Carrick DM and Balckshear PJ: Comparative
expression of tristetraprolin (TTP) family member transcripts in
normal human tissues and cancer cell lines. Arch Biochem Biophys.
462:278–285. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gaudet F, Hodgson G, Eden A,
Jackson-Grusby L, Dausman J, Gray JW, Leohardt H and Jaenisch R:
Induction of tumors in mice by genomic hypomethylation. Science.
300:489–492. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fuso A, Nicolia V, Cavallaro RA and Scarpa
S: DNA methylase and demethylase activities are modulated by
one-carbon metabolism in Alzheimer's disease models. J Nutr
Biochem. 22:242–251. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
López-Pedrera C, Pérez-Sánchez C,
Ramos-Casals M, Santos-Gonzalez M, Rodriguez-Ariza A and Cuadrado
MJ: Cardiovascular risk in systemic autoimmune diseases. Epigenetic
mechanisms of immune regulatory functions. Clin Dev Immunol.
2012:9746482012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sacconi S, Camaño P, de Greef JC, Lemmers
RJ, Salviati L, Boileau P, Lopez de Munain Arregui A, van der
Maarel SM and Desnuelle C: Patients with a phenotype consistent
with facioscapulohumeral muscular dystrophy display genetic and
epigenetic heterogeneity. J Med Genet. 49:41–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chik F and Szyf M: Effects of specific
DNMT gene depletion on cancer cell transformation and breast cancer
cell invasion; Toward selective DNMT inhibitors. Carcinogenesis.
32:224–232. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hardy TM and Tollefsbol TO: Epigenetic
diet: Impact on the epigenome and cancer. Epigenomics. 3:503–518.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Khan SI, Aumsuwan P, Khan IA, Walker LA
and Dasmahapatra AK: Epigenetic events associated with breast
cancer and their prevention by dietary components targeting the
epigenome. Chem Res Toxicol. 25:61–73. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gerhauser C: Cancer chemoprevention and
nutriepigenetics: State of the art and future challenges. Top Curr
Chem. 329:73–132. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu
L, Liu Z and Lu L: Epigenetic regulation of active Chinese herbal
components for cancer prevention and treatment. A follow-up review.
Pharmacol Res. 114:1–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kala R, Shah HN, Martin SL and Tollefsbol
TO: Epigenetic-based combinatorial resveratrol and pterostilbene
alters DNA damage response by affecting SIRT1 and DNMT enzyme
expression, including SIRT1-dependent γ-H2AX and telomerase
regulation in triple-negative breast cancer. BMC Cancer.
15:6722015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mirza S, Sharma G, Parshad R, Gupta SD,
Pandya P and Ralhan R: Expression of DNA methyltransferases in
breast cancer patients and to analyze the effect of natural
compounds on DNA methyltransferases and associated proteins. J
Breast Cancer. 16:23–31. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Garvina S, Ollinger K and Dabrosin C:
Resveratrol induces apoptosis and inhibits angiogenesis in human
breast cancer xenografts in vivo. Cancer Lett. 231:113–122. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu YZ, Wu K, Huang J, Liu Y, Wang X, Meng
ZJ, Yuan SX, Wang DX, Luo JY, Zuo GW, et al: The PTEN/PI3K/Aktand
Wnt/β-catenin signaling pathways are involved in the inhibitory
effect of resveratrol on human colon cancer cell proliferation. Int
J Oncol. 45:104–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee M, Choi B, Kundu JK, Shin YK, Na HK
and Surh YJ: Resveratrol suppresses growth of human ovarian cancer
cells in culture and in a murine xenograft model: Eukaryotic
elongation factor 1A2 as a potential target. Cancer Res.
69:7449–7458. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jiao Y, Li H, Liu Y, Guo A, Xu X, Qu X,
Wang S, Zhao J, Li Y and Cao Y: Resveratrol inhibits the invasion
of glioblastoma-initiating cells via down-regulation of the
PI3K/Akt/NF-κB signaling pathway. Nutrients. 7:4383–4402. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang T, Zhang J, Zhou J, Zhu M, Wang L and
Yan L: Resveratrol inhibits interleukin-6 induced invasion of human
gastric cancer cells. Biomed Pharmacother. 99:766–773. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Oi N, Jeong CH, Nadas J, Cho YY, Pugliese
A, Bode A and Dong Z: Resveratrol, a red Wine polyphenol,
suppresses pancreatic cancer by inhibiting leukotriene A4
hydrolase. Cancer Res. 70:9755–9763. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qin W, Zhang K, Clarke K, Weiland T and
Sauter ER: Methylation and miRNA effects of resveratrol on mammary
tumors vs. normal tissue. Nutr Cancer. 66:270–277. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lee H, Zhang P, Herrmann A, Yang C, Xin H,
Wang Z, Hoon DS, Forman SJ, Jove R, Riggs AD, et al: Acetylated
STAT3 is crucial for methylation of tumor-suppressor gene promoter
and inhibition by resveratrol results in demethylation. Proc Natl
Acad Sci USA. 109:7765–7769. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Stefanska B, Salamé P, Bednarek A and
Fabianowska-Majewska K: Comparative effects of retinoic acid,
vitamin D and resveratrol alone and in combination with adenosine
analogues on methylation and expression of phosphatase and tensin
homologue tumour suppressor gene in breast cancer cells. Br J Nutr.
107:781–790. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Papoutsis AJ, Borg JL, Selmin OI and
Romagnolo DF: BRCA-1 promoter hypermethylation and silencing
induced by the aromatic hydrocarbon receptor-ligand TCDD are
prevented by resveratrol in MCF-7 cells. J Nurt Biochem.
23:1324–1332. 2012. View Article : Google Scholar
|
|
56
|
Ohshiro K, Rayala SK, Kondo S, Gaur A,
Vadlamudi RK, El-Naggar AK and Kumar R: Identifying the estrogen
receptor coactivator PELP1 in autophagosomes. Cancer Res.
67:8164–8171. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Whyte L, Huang YY, Torres K and Mehta RG:
Molecular mechanisms of resveratrol action in lung cancer cells
using dual protein and microarray analyses. Cancer Res.
67:12007–12017. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ebi H, Tomida S, Takeuchi T, Arima C, Sato
T, Mitsudomi T, Yatabe Y, Osada H and Takahashi T: Relationship of
deregulated signaling converging onto mTOR with prognosis and
classification of lung adenocarcinoma shown by two independent in
silico analyses. Cancer Res. 69:4027–4035. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu JY, Tsai KW, Shee JJ, Li YZ, Chen CH,
Chuang JJ and Liu YW: 4-Chloro-3,5-dihydroxystilbene, a resveratrol
derivative, induces lung cancer cell death. Acta Pharmacol Sin.
31:81–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dinkova-Kostova AT, Holtzclaw WD and
Wakabayashi N: Keap1, the sensor for electrophiles and oxidants
that regulates the phase 2 response, is a zinc metalloprotein.
Biochemistry. 44:6889–6899. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kim JH, Park EY, Ha HK, Jo CM, Lee WJ, Lee
SS and Kim JW: Resveratrol-loaded nanoparticles induce antioxidant
activity against oxidative stress. Asian Australas J Anim Sci.
29:288–298. 2016. View Article : Google Scholar : PubMed/NCBI
|