|
1
|
Bulletti C, Coccia ME, Battistoni S and
Borini A: Endometriosis and infertility. J Assist Reprod Genet.
27:441–447. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Giudice LC and Kao LC: Endometriosis.
Lancet. 364:1789–1799. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brinton LA, Sakoda LC, Sherman ME,
Frederiksen K, Kjaer SK, Graubard BI, Olsen JH and Mellemkjaer L:
Relationship of benign gynecologic diseases to subsequent risk of
ovarian and uterine tumors. Cancer Epidemiol Biomarkers Prev.
14:2929–2935. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kobayashi H, Sumimoto K, Kitanaka T,
Yamada Y, Sado T, Sakata M, Yoshida S, Kawaguchi R, Kanayama S,
Shigetomi H, et al: Ovarian endometrioma--risks factors of ovarian
cancer development. Eur J Obstet Gynecol Reprod Biol. 138:187–193.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim HS, Kim TH, Chung HH and Song YS: Risk
and prognosis of ovarian cancer in women with endometriosis: A
meta-analysis. Br J Cancer. 110:1878–1890. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wilbur MA, Shih IM, Segars JH and Fader
AN: Cancer implications for patients with endometriosis. Semin
Reprod Med. 35:110–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Munksgaard PS and Blaakaer J: The
association between endometriosis and gynecological cancers and
breast cancer: A review of epidemiological data. Gynecol Oncol.
123:157–163. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kurman RJ and Shih IeM: Pathogenesis of
ovarian cancer: Lessons from morphology and molecular biology and
their clinical implications. Int J Gynecol Pathol. 27:151–160.
2008.PubMed/NCBI
|
|
9
|
Kurman RJ and Shih IeM: The origin and
pathogenesis of epithelial ovarian cancer: A proposed unifying
theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wu RC, Veras E, Lin J, Gerry E,
Bahadirli-Talbott A, Baras A, Ayhan A, Shih IM and Wang TL:
Elucidating the pathogenesis of synchronous and metachronous tumors
in a woman with endometrioid carcinomas using a whole-exome
sequencing approach. Cold Spring Harb Mol Case Stud. 3:a0016932017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kajihara H, Yamada Y, Shigetomi H,
Higashiura Y and Kobayashi H: The dichotomy in the histogenesis of
endometriosis-associated ovarian cancer: Clear cell-type versus
endometrioid-type adenocarcinoma. Int J Gynecol Pathol. 31:304–312.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
van der Horst PH, van der Zee M,
Heijmans-Antonissen C, Jia Y, DeMayo FJ, Lydon JP, van Deurzen CH,
Ewing PC, Burger CW and Blok LJ: A mouse model for endometrioid
ovarian cancer arising from the distal oviduct. Int J Cancer.
135:1028–1037. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wu R, Zhai Y, Kuick R, Karnezis AN, Garcia
P, Naseem A, Hu TC, Fearon ER and Cho KR: Impact of oviductal
versus ovarian epithelial cell of origin on ovarian endometrioid
carcinoma phenotype in the mouse. J Pathol. 240:341–351. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rambau P, Kelemen LE, Steed H, Quan ML,
Ghatage P and Köbel M: Association of hormone receptor expression
with survival in ovarian endometrioid carcinoma: Biological
validation and clinical implications. Int J Mol Sci. 18:E5152017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lukanova A and Kaaks R: Endogenous
hormones and ovarian cancer: Epidemiology and current hypotheses.
Cancer Epidemiol Biomarkers Prev. 14:98–107. 2005.PubMed/NCBI
|
|
16
|
Wu R, Hendrix-Lucas N, Kuick R, Zhai Y,
Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO,
et al: Mouse model of human ovarian endometrioid adenocarcinoma
based on somatic defects in the Wnt/beta-catenin and PI3K/Pten
signaling pathways. Cancer Cell. 11:321–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tanwar PS, Zhang L, Kaneko-Tarui T, Curley
MD, Taketo MM, Rani P, Roberts DJ and Teixeira JM: Mammalian target
of rapamycin is a therapeutic target for murine ovarian
endometrioid adenocarcinomas with dysregulated Wnt/β-catenin and
PTEN. PLoS One. 6:e207152011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tao GZ, Lehwald N, Jang KY, Baek J, Xu B,
Omary MB and Sylvester KG: Wnt/β-catenin signaling protects mouse
liver against oxidative stress-induced apoptosis through the
inhibition of forkhead transcription factor FoxO3. J Biol Chem.
288:17214–17224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mahalingaiah PK and Singh KP: Chronic
oxidative stress increases growth and tumorigenic potential of
MCF-7 breast cancer cells. PLoS One. 9:e873712014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mandai M, Matsumura N, Baba T, Yamaguchi
K, Hamanishi J and Konishi I: Ovarian clear cell carcinoma as a
stress-responsive cancer: Influence of the microenvironment on the
carcinogenesis and cancer phenotype. Cancer Lett. 310:129–133.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Suryawanshi S, Huang X, Elishaev E, Budiu
RA, Zhang L, Kim S, Donnellan N, Mantia-Smaldone G, Ma T, Tseng G,
et al: Complement pathway is frequently altered in endometriosis
and endometriosis-associated ovarian cancer. Clin Cancer Res.
20:6163–6174. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Iwabuchi T, Yoshimoto C, Shigetomi H and
Kobayashi H: Oxidative stress and antioxidant defense in
endometriosis and its malignant transformation. Oxid Med Cell
Longev 2015. 8485952015.
|
|
23
|
Kobayashi H: Potential scenarios leading
to ovarian cancer arising from endometriosis. Redox Rep.
21:119–126. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Iwabuchi T, Yoshimoto C, Shigetomi H and
Kobayashi H: Cyst fluid hemoglobin species in endometriosis and its
malignant transformation: The role of metallobiology. Oncol Lett.
11:3384–3388. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bandini S, Macagno M, Hysi A, Lanzardo S,
Conti L, Bello A, Riccardo F, Ruiu R, Merighi IF, Forni G, et al:
The non-inflammatory role of C1q during Her2/neu-driven mammary
carcinogenesis. Oncoimmunology. 5:e12536532016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
McKinnon BD, Kocbek V, Nirgianakis K,
Bersinger NA and Mueller MD: Kinase signalling pathways in
endometriosis: Potential targets for non-hormonal therapeutics. Hum
Reprod Update. 22:382–403. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jung M, Weigert A, Mertens C, Rehwald C
and Brüne B: Iron handling in tumor-associated macrophages: Is
there a new role for lipocalin-2? Front Immunol. 8:11712017.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ngô C, Chéreau C, Nicco C, Weill B,
Chapron C and Batteux F: Reactive oxygen species controls
endometriosis progression. Am J Pathol. 175:225–234. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Alayash AI: Oxygen therapeutics: Can we
tame haemoglobin? Nat Rev Drug Discov. 3:152–159. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yamaguchi K, Mandai M, Toyokuni S,
Hamanishi J, Higuchi T, Takakura K and Fujii S: Contents of
endometriotic cysts, especially the high concentration of free
iron, are a possible cause of carcinogenesis in the cysts through
the iron-induced persistent oxidative stress. Clin Cancer Res.
14:32–40. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yoshimoto C, Iwabuchi T, Shigetomi H and
Kobayashi H: Cyst fluid iron-related compounds as useful markers to
distinguish malignant transformation from benign endometriotic
cysts. Cancer Biomark. 15:493–499. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Akatsuka S, Yamashita Y, Ohara H, Liu YT,
Izumiya M, Abe K, Ochiai M, Jiang L, Nagai H, Okazaki Y, et al:
Fenton reaction induced cancer in wild type rats recapitulates
genomic alterations observed in human cancer. PLoS One.
7:e434032012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kianpour M, Nematbakhsh M and Ahmadi SM:
Asymmetric dimethylarginine (ADMA), nitric oxide metabolite, and
estradiol levels in serum and peritoneal fluid in women with
endometriosis. Iran J Nurs Midwifery Res. 20:484–489. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yeo SG, Won YS, Lee HY, Kim YI, Lee JW and
Park DC: Increased expression of pattern recognition receptors and
nitric oxide synthase in patients with endometriosis. Int J Med
Sci. 10:1199–1208. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bellavia L, DuMond JF, Perlegas A, Bruce
King S and Kim-Shapiro DB: Nitroxyl accelerates the oxidation of
oxyhemoglobin by nitrite. Nitric Oxide. 31:38–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
den Boer PJ, Bleeker WK, Rigter G,
Agterberg J, Stekkinger P, Kannegieter LM, de Nijs IM and Bakker
JC: Intravascular reduction of methemoglobin in plasma of the rat
in vivo. Biomater Artif Cells Immobilization Biotechnol.
20:647–650. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Amano Y, Mandai M, Yamaguchi K, Matsumura
N, Kharma B, Baba T, Abiko K, Hamanishi J, Yoshioka Y and Konishi
I: Metabolic alterations caused by HNF1β expression in ovarian
clear cell carcinoma contribute to cell survival. Oncotarget.
6:26002–26017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Harris IS, Treloar AE, Inoue S, Sasaki M,
Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA,
et al: Glutathione and thioredoxin antioxidant pathways synergize
to drive cancer initiation and progression. Cancer Cell.
27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Winarto H, Tan MI, Sadikin M and Wanandi
SI: ARID1A Expression is down-regulated by oxidative stress
in endometriosis and endometriosis-associated ovarian cancer.
Transl Oncogenomics. February 24–2017.doi. 1177272716689818.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yan S, Sorrell M and Berman Z: Functional
interplay between ATM/ATR-mediated DNA damage response and DNA
repair pathways in oxidative stress. Cell Mol Life Sci.
71:3951–3967. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Toyokuni S: Iron and thiols as two major
players in carcinogenesis: Friends or foes? Front Pharmacol.
5:2002014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hackett MJ, DeSouza M, Caine S, Bewer B,
Nichol H, Paterson PG and Colbourne F: A new method to image
heme-Fe, total Fe, and aggregated protein levels after
intracerebral hemorrhage. ACS Chem Neurosci. 6:761–770. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chaudhary N, Pandey AS, Merchak K, Gemmete
JJ, Chenevert T and Xi G: Perihematomal cerebral tissue iron
quantification on MRI following intracerebral hemorrhage in two
human subjects: Proof of principle. Acta Neurochir Suppl (Wien).
121:179–183. 2016. View Article : Google Scholar
|
|
44
|
Nagano O, Okazaki S and Saya H: Redox
regulation in stem-like cancer cells by CD44 variant isoforms.
Oncogene. 32:5191–5198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Szumiel I: Ionizing radiation-induced
oxidative stress, epigenetic changes and genomic instability: The
pivotal role of mitochondria. Int J Radiat Biol. 91:1–12. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu Q and Ni X: ROS-mediated DNA
methylation pattern alterations in carcinogenesis. Curr Drug
Targets. 16:13–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bandaru B, Gopal J and Bhagwat AS:
Overproduction of DNA cytosine methyltransferases causes
methylation and C --> T mutations at non-canonical sites. J Biol
Chem. 271:7851–7859. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Samson-Thibault F, Madugundu GS, Gao S,
Cadet J and Wagner JR: Profiling cytosine oxidation in DNA by
LC-MS/MS. Chem Res Toxicol. 25:1902–1911. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M,
Kaniwa H, Miyake R, Yamanaka S and Kobayashi H: Role of oxidative
stress in epigenetic modification in endometriosis. Reprod Sci.
24:1493–1502. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He J, Chang W, Feng C, Cui M and Xu T:
Endometriosis malignant transformation: Epigenetics as a probable
mechanism in ovarian tumorigenesis. Int J Genomics 2018.
14653482018.
|
|
51
|
Bulun SE, Monsivais D, Kakinuma T,
Furukawa Y, Bernardi L, Pavone ME and Dyson M: Molecular biology of
endometriosis: From aromatase to genomic abnormalities. Semin
Reprod Med. 33:220–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xie H, Chen P, Huang HW, Liu LP and Zhao
F: Reactive oxygen species downregulate ARID1A expression via its
promoter methylation during the pathogenesis of endometriosis. Eur
Rev Med Pharmacol Sci. 21:4509–4515. 2017.PubMed/NCBI
|
|
53
|
Kolin DL, Dinulescu DM and Crum CP: Origin
of clear cell carcinoma: nature or nurture? J Pathol. 244:131–134.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chang CM, Yang YP, Chuang JH, Chuang CM,
Lin TW, Wang PH, Yu MH and Chang CC: Discovering the deregulated
molecular functions involved in malignant transformation of
endometriosis to endometriosis-associated ovarian carcinoma using a
data-driven, function-based analysis. Int J Mol Sci.
18:23452017.doi: 10.3390/ijms18112345. View Article : Google Scholar :
|
|
55
|
Bulun SE: Endometriosis. N Engl J Med.
360:268–279. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ayhan A, Mao TL, Seckin T, Wu CH, Guan B,
Ogawa H, Futagami M, Mizukami H, Yokoyama Y, Kurman RJ, et al: Loss
of ARID1A expression is an early molecular event in tumor
progression from ovarian endometriotic cyst to clear cell and
endometrioid carcinoma. Int J Gynecol Cancer. 22:1310–1315. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Veillat V, Sengers V, Metz CN, Roger T,
Leboeuf M, Mailloux J and Akoum A: Macrophage migration inhibitory
factor is involved in a positive feedback loop increasing aromatase
expression in endometriosis. Am J Pathol. 181:917–927. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tanase Y, Yamada Y, Shigetomi H, Kajihara
H, Oonogi A, Yoshizawa Y, Furukawa N, Haruta S, Yoshida S, Sado T,
et al: Modulation of estrogenic action in clear cell carcinoma of
the ovary (Review). Exp Ther Med. 3:18–24. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Worley MJ Jr, Welch WR, Berkowitz RS and
Ng SW: Endometriosis-associated ovarian cancer: A review of
pathogenesis. Int J Mol Sci. 14:5367–5379. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lai CR, Hsu CY, Chen YJ, Yen MS, Chao KC
and Li AF: Ovarian cancers arising from endometriosis: A
microenvironmental biomarker study including ER, HNF1β, p53, PTEN,
BAF250a, and COX-2. J Chin Med Assoc. 76:629–634. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Takeda T, Banno K, Okawa R, Yanokura M,
Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K,
et al: ARID1A gene mutation in ovarian and endometrial cancers
(Review). Oncol Rep. 35:607–613. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bissell MJ: Modelling molecular mechanisms
of breast cancer and invasion: Lessons from the normal gland.
Biochem Soc Trans. 35:18–22. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kobayashi H, Kajiwara H, Kanayama S,
Yamada Y, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M,
Sado T, et al: Molecular pathogenesis of endometriosis-associated
clear cell carcinoma of the ovary (Review). Oncol Rep. 22:233–240.
2009.PubMed/NCBI
|
|
64
|
Anglesio MS, Papadopoulos N, Ayhan A,
Nazeran TM, Noë M, Horlings HM, Lum A, Jones S, Senz J, Seckin T,
et al: Cancer-associated mutations in endometriosis without cancer.
N Engl J Med. 376:1835–1848. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zou Y, Zhou JY, Guo JB, Wang LQ, Luo Y,
Zhang ZY, Liu FY, Tan J, Wang F and Huang OP: The presence of KRAS,
PPP2R1A and ARID1A mutations in 101 Chinese samples with ovarian
endometriosis. Mutat Res. 809:1–5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jamnongkan W, Thanee M, Yongvanit P,
Loilome W, Thanan R, Kimawaha P, Boonmars T, Silakit R, Namwat N
and Techasen A: Antifibrotic effect of xanthohumol in combination
with praziquantel is associated with altered redox status and
reduced iron accumulation during liver fluke-associated
cholangiocarcinogenesis. PeerJ. 6:e42812018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jimbo H, Hitomi Y, Yoshikawa H, Yano T,
Momoeda M, Sakamoto A, Tsutsumi O, Taketani Y and Esumi H: Evidence
for monoclonal expansion of epithelial cells in ovarian endometrial
cysts. Am J Pathol. 150:1173–1178. 1997.PubMed/NCBI
|
|
68
|
Mandai M, Amano Y, Yamaguchi K, Matsumura
N, Baba T and Konishi I: Ovarian clear cell carcinoma meets
metabolism; HNF-1β confers survival benefits through the Warburg
effect and ROS reduction. Oncotarget. 6:30704–30714. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bukulmez O, Hardy DB, Carr BR, Word RA and
Mendelson CR: Inflammatory status influences aromatase and steroid
receptor expression in endometriosis. Endocrinology. 149:1190–1204.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kato N, Tamura G and Motoyama T:
Hypomethylation of hepatocyte nuclear factor-1beta (HNF-1beta) CpG
island in clear cell carcinoma of the ovary. Virchows Arch.
452:175–180. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kato N, Sasou S and Motoyama T: Expression
of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors
and endometriosis of the ovary. Mod Pathol. 19:83–89. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Takano M, Kikuchi Y, Kudoh K, Goto T,
Furuya K, Kikuchi R, Kita T, Fujiwara K, Shiozawa T and Aoki D:
Weekly administration of temsirolimus for heavily pretreated
patients with clear cell carcinoma of the ovary: A report of six
cases. Int J Clin Oncol. 16:605–609. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shigetomi H, Tsunemi T, Haruta S, Kajihara
H, Yoshizawa Y, Tanase Y, Furukawa N, Yoshida S, Sado T and
Kobayash H: Molecular mechanisms linking endometriosis under
oxidative stress with ovarian tumorigenesis and therapeutic
modalities. Cancer Invest. 30:473–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kao YC, Lin MC, Lin WC, Jeng YM and Mao
TL: Utility of hepatocyte nuclear factor-1β as a diagnostic marker
in ovarian carcinomas with clear cells. Histopathology. 61:760–768.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ye S, Yang J, You Y, Cao D, Huang H, Wu M,
Chen J, Lang J and Shen K: Clinicopathologic significance of
HNF-1β, AIRD1A, and PIK3CA expression in ovarian clear cell
carcinoma: A tissue microarray study of 130 cases. Medicine
(Baltimore). 95:e30032016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Barbacci E, Chalkiadaki A, Masdeu C,
Haumaitre C, Lokmane L, Loirat C, Cloarec S, Talianidis I,
Bellanne-Chantelot C and Cereghini S: HNF1beta/TCF2 mutations
impair transactivation potential through altered co-regulator
recruitment. Hum Mol Genet. 13:3139–3149. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kobayashi H, Yamada Y, Kanayama S,
Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T and Oi
H: The role of hepatocyte nuclear factor-1beta in the pathogenesis
of clear cell carcinoma of the ovary. Int J Gynecol Cancer.
19:471–479. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Okamoto T, Mandai M, Matsumura N,
Yamaguchi K, Kondoh H, Amano Y, Baba T, Hamanishi J, Abiko K,
Kosaka K, et al: Hepatocyte nuclear factor-1β (HNF-1β) promotes
glucose uptake and glycolytic activity in ovarian clear cell
carcinoma. Mol Carcinog. 54:35–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Senkel S, Lucas B, Klein-Hitpass L and
Ryffel GU: Identification of target genes of the transcription
factor HNF1beta and HNF1alpha in a human embryonic kidney cell
line. Biochim Biophys Acta 1731. 179–190. 2005.
|
|
80
|
Gregori C, Porteu A, Mitchell C, Kahn A
and Pichard AL: In vivo functional characterization of the aldolase
B gene enhancer. J Biol Chem. 277:28618–28623. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yamaguchi K, Mandai M, Oura T, Matsumura
N, Hamanishi J, Baba T, Matsui S, Murphy SK and Konishi I:
Identification of an ovarian clear cell carcinoma gene signature
that reflects inherent disease biology and the carcinogenic
processes. Oncogene. 29:1741–1752. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shigetomi H, Higashiura Y, Kajihara H and
Kobayashi H: A potential link of oxidative stress and cell cycle
regulation for development of endometriosis. Gynecol Endocrinol.
28:897–902. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Akasaka J, Uekuri C, Shigetomi H, Koike M
and Kobayashi H: Hepatocyte nuclear factor (HNF)-1β and its
physiological importance in endometriosis. Biomed Rep. 1:13–17.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang X, Wu H, Yu W, Liu J, Peng J, Liao N,
Zhang J, Zhang X and Hai C: Hepatocyte nuclear factor 1b is a novel
negative regulator of white adipocyte differentiation. Cell Death
Differ. 24:1588–1597. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lopes-Coelho F, Gouveia-Fernandes S,
Gonçalves LG, Nunes C, Faustino I, Silva F, Félix A, Pereira SA and
Serpa J: HNF1β drives glutathione (GSH) synthesis underlying
intrinsic carboplatin resistance of ovarian clear cell carcinoma
(OCCC). Tumour Biol. 37:4813–4829. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sundar R, Brown J, Ingles Russo A and Yap
TA: Targeting ATR in cancer medicine. Curr Probl Cancer.
41:302–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shigetomi H, Sudo T, Shimada K, Uekuri C,
Tsuji Y, Kanayama S, Naruse K, Yamada Y, Konishi N and Kobayashi H:
Inhibition of cell death and induction of G2 arrest accumulation in
human ovarian clear cells by HNF-1β transcription factor:
Chemosensitivity is regulated by checkpoint kinase CHK1. Int J
Gynecol Cancer. 24:838–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Koshiyama M, Matsumura N and Konishi I:
Recent concepts of ovarian carcinogenesis: Type I and type II.
BioMed Res Int 2014. 9342612014.
|
|
89
|
Ito F, Yoshimoto C, Yamada Y, Sudo T and
Kobayashi H: The HNF-1β-USP28-Claspin pathway upregulates DNA
damage-induced Chk1 activation in ovarian clear cell carcinoma.
Oncotarget. 9:17512–17522. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Venne AS, Kollipara L and Zahedi RP: The
next level of complexity: Crosstalk of posttranslational
modifications. Proteomics. 14:513–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Terman JR and Kashina A:
Post-translational modification and regulation of actin. Curr Opin
Cell Biol. 25:30–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang D, Zaugg K, Mak TW and Elledge SJ: A
role for the deubiquitinating enzyme USP28 in control of the
DNA-damage response. Cell. 126:529–542. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Martín Y, Cabrera E, Amoedo H,
Hernández-Pérez S, Domínguez-Kelly R and Freire R: USP29 controls
the stability of checkpoint adaptor Claspin by deubiquitination.
Oncogene. 34:1058–1063. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen S, Dai X, Gao Y, Shen F, Ding J and
Chen Q: The positivity of estrogen receptor and progesterone
receptor may not be associated with metastasis and recurrence in
epithelial ovarian cancer. Sci Rep. 7:169222017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Long L, Cao Y and Tang LD: Transmembrane
estrogen receptor GPR30 is more frequently expressed in malignant
than benign ovarian endometriotic cysts and correlates with MMP-9
expression. Int J Gynecol Cancer. 22:539–545. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yamaguchi K, Huang Z, Matsumura N, Mandai
M, Okamoto T, Baba T, Konishi I, Berchuck A and Murphy SK:
Epigenetic determinants of ovarian clear cell carcinoma biology.
Int J Cancer. 135:585–597. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wendel JRH, Wang X and Hawkins SM: The
endometriotic tumor microenvironment in ovarian cancer. Cancers
(Basel). 10:E2612018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kobayashi H, Sugimoto H, Onishi S and
Nakano K: Novel biomarker candidates for the diagnosis of ovarian
clear cell carcinoma. Oncol Lett. 10:612–618. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu H, Wang J, Wang H, Tang N, Li Y, Zhang
Y and Hao T: Correlation between matrix metalloproteinase-9 and
endometriosis. Int J Clin Exp Pathol. 8:13399–13404.
2015.PubMed/NCBI
|
|
101
|
Kisielewski R, Tołwińska A, Mazurek A and
Laudański P: Inflammation and ovarian cancer--current views.
Ginekol Pol. 84:293–297. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kaponis A, Iwabe T, Taniguchi F, Ito M,
Deura I, Decavalas G, Terakawa N and Harada T: The role of
NF-kappaB in endometriosis. Front Biosci (Schol Ed). 4:1213–1234.
2012.PubMed/NCBI
|
|
103
|
Suzuki E, Kajita S, Takahashi H, Matsumoto
T, Tsuruta T and Saegusa M: Transcriptional upregulation of HNF-1β
by NF-κB in ovarian clear cell carcinoma modulates susceptibility
to apoptosis through alteration in bcl-2 expression. Lab Invest.
95:962–972. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Jana S, Chatterjee K, Ray AK, DasMahapatra
P and Swarnakar S: Regulation of matrix metalloproteinase-2
activity by COX-2-PGE2-pAKT axis promotes angiogenesis in
endometriosis. PLoS One. 11:e01635402016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ruiz LA, Báez-Vega PM, Ruiz A, Peterse DP,
Monteiro JB, Bracero N, Beauchamp P, Fazleabas AT and Flores I:
Dysregulation of lysyl oxidase expression in lesions and
endometrium of women with endometriosis. Reprod Sci. 22:1496–1508.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ruiz A, Ruiz L, Colón-Caraballo M,
Torres-Collazo BJ, Monteiro JB, Bayona M, Fazleabas AT and Flores
I: Pharmacological blockage of the CXCR4-CXCL12 axis in
endometriosis leads to contrasting effects in proliferation,
migration, and invasion. Biol Reprod. 98:4–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Del Carmen MG, Smith Sehdev AE, Fader AN,
Zahurak ML, Richardson M, Fruehauf JP, Montz FJ and Bristow RE:
Endometriosis-associated ovarian carcinoma: Differential expression
of vascular endothelial growth factor and estrogen/progesterone
receptors. Cancer. 98:1658–1663. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Laschke MW and Menger MD: Basic mechanisms
of vascularization in endometriosis and their clinical
implications. Hum Reprod Update. 24:207–224. 2018. View Article : Google Scholar
|
|
109
|
Becker CM, Beaudry P, Funakoshi T, Benny
O, Zaslavsky A, Zurakowski D, Folkman J, D'Amato RJ and Ryeom S:
Circulating endothelial progenitor cells are up-regulated in a
mouse model of endometriosis. Am J Pathol. 178:1782–1791. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wei JJ, William J and Bulun S:
Endometriosis and ovarian cancer: A review of clinical, pathologic,
and molecular aspects. Int J Gynecol Pathol. 30:553–568. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mandai M, Yamaguchi K, Matsumura N, Baba T
and Konishi I: Ovarian cancer in endometriosis: Molecular biology,
pathology, and clinical management. Int J Clin Oncol. 14:383–391.
2009. View Article : Google Scholar : PubMed/NCBI
|