You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Udan RS, Kangosingh M, Nolo R, Tao C and Halder G: Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 5:914–920. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Varelas X: The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 141:1614–1626. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Halder G and Johnson RL: Hippo signaling: Growth control and beyond. Development. 138:9–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yu FX and Guan KL: The Hippo pathway: Regulators and regulations. Genes Dev. 27:355–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yu FX, Zhao B and Guan KL: Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wierzbicki PM and Rybarczyk A: The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol. 53:105–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shi P, Feng J and Chen C: Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shanghai). 47:53–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ding W, Chen C, Niu Z, Pan M and Zhang H: Roles of Hippo signaling in lung cancer. Indian J Cancer. 52 Suppl 1:e1–e5. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Wang M, Xu S, Guo X and Jiang J: Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 6:44466–44479. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014.PubMed/NCBI | |
|
Herrmann J, Lerman LO and Lerman A: Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 100:1276–1291. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hanpude P, Bhattacharya S, Dey AK and Maiti TK: Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life. 67:544–555. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wilkinson KD: Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 11:141–148. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hong W and Guan KL: The YAP and TAZ transcription co-activators: Key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 23:785–793. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen CG, Moroishi T and Guan KL: YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol. 25:499–513. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Strano S, Monti O, Baccarini A, Sudol M, Sacchi A, Oren M, Sudol M, Cesareni G and Blandino G: Physical interaction with yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 37:15164–15173. 2001. View Article : Google Scholar | |
|
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, et al: Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Varelas X, Sakuma R, Samavarchitehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A and Mauviel A: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene. 21:4879–4884. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kelleher FC and O'Sullivan H: FOXM1 in sarcoma: Role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget. 7:42792–42804. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Murakami M, Nakagawa M, Olson EN and Nakagawa O: A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA. 102:18034–18039. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, et al: β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 151:1457–1473. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi R, Chen LF, Shigesada K, Murakami Y and Ito Y: A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18:2551–2562. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, et al: VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 24:331–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Lei QY and Guan KL: The Hippo-YAP pathway: New connections between regulation of organ size and cancer. Curr Opin Cell Biol. 20:638–646. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn EY, Kim JS, Kim GJ and Park YN: RASSF1A-mediated regulation of AREG via the Hippo pathway in hepatocellular carcinoma. Mol Cancer Res. 11:748–758. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ma K, Xu Q, Wang S, Zhang W, Liu M, Liang S, Zhu H and Xu N: Nuclear accumulation of Yes-Associated Protein (YAP) maintains the survival of doxorubicin-induced senescent cells by promoting survivin expression. Cancer Lett. 375:84–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Staley BK and Irvine KD: Hippo signaling in Drosophila: Recent advances and insights. Dev Dyn. 241:3–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Boggiano JC, Vanderzalm PJ and Fehon RG: Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell. 21:888–895. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang HL, Wang S, Yin MX, Dong L, Wang C, Wu W, Lu Y, Feng M, Dai C, Guo X, et al: Par-1 regulates tissue growth by influencing Hippo phosphorylation status and Hippo-salvador association. PLoS Biol. 11:e10016202013. View Article : Google Scholar : PubMed/NCBI | |
|
Genevet A, Wehr MC, Brain R, Thompson BJ and Tapon N: Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell. 18:300–308. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Z, Moroishi T, Mottierpavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, et al: MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 6:83572015. View Article : Google Scholar : PubMed/NCBI | |
|
Yin F, Yu J, Zheng Y, Chen Q, Zhang N and Pan D: Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 154:1342–1355. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, et al: Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol. 23:1181–1194. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Huntoon CJ, Nye MD, Geng L, Peterson KL, Flatten KS, Haluska P, Kaufmann SH and Karnitz LM: Heat shock protein 90 inhibition depletes LATS1 and LATS2, two regulators of the mammalian hippo tumor suppressor pathway. Cancer Res. 70:8642–8650. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Das Thakur M, Feng Y, Jagannathan R, Seppa MJ, Skeath JB and Longmore GD: Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol. 20:657–662. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF and Hong W: WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene. 30:600–610. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH and Zhang J: PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene. 32:1266–1273. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LSB, Abujarour R, et al: The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24:1106–1118. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R and Brummelkamp TR: YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 17:2054–2060. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, Mcanally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, et al: Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA. 110:13839–13844. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR and Camargo FD: Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 144:782–795. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL and Martin JF: Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 332:458–461. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Pasolli HA and Fuchs E: Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA. 108:2270–2275. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD and Pu WT: YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 109:2394–2399. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Harvey KF, Pfleger CM and Hariharan IK: The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 114:457–467. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Jia J, Zhang W, Wang B, Trinko R and Jiang J: The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17:2514–2519. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS and Johnson RL: Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA. 107:1437–1442. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xin M, Kim Y, Sutherland LB, Qi X, Mcanally J, Schwartz RJ, Richardson JA, Basselduby R and Olson EN: Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 4:ra702011. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson R and Halder G: The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 13:63–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J and Bardeesy N: Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 16:425–438. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Q, Le ES, Jahchan N, Ji X, Xu A and Luo K: SnoN antagonizes the Hippo kinase complex to promote TAZ signaling during breast carcinogenesis. Dev Cell. 37:399–412. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jing Z, Wang G, Chu SJ, Zhu JS, Rui Z, Lu WW, Xia LQ, Lu YM, Wei D and Sun Q: Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling. Oncotarget. 7:16180–16193. 2016.PubMed/NCBI | |
|
Strazisar M, Mlakar V and Glavac D: LATS2 tumour specific mutations and down-regulation of the gene in non-small cell carcinoma. Lung Cancer. 64:257–262. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ishizaki K, Fujimoto J, Kumimoto H, Nishimoto Y, Shimada Y, Shinoda M and Yamamoto T: Frequent polymorphic changes but rare tumor specific mutations of the LATS2 gene on 13q11-12 in esophageal squamous cell carcinoma. Int J Oncol. 21:1053–1057. 2002.PubMed/NCBI | |
|
Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, Mckee T, Letourneau A, et al: Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 48:398–406. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JH, Kavanagh JJ, Wildrick DM, Wharton JT and Blick M: Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in human ovarian carcinomas. Cancer Res. 50:2724–2728. 1990.PubMed/NCBI | |
|
Theile M, Seitz S, Arnold W, Jandrig B, Frege R, Schlag PM, Haensch W, Guski H, Winzer KJ, Barrett JC and Scherneck S: A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer. Oncogene. 13:677–685. 1996.PubMed/NCBI | |
|
Noviello C, Courjal F and Theillet C: Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: Possibly four regions of deletion. Clin Cancer Res. 2:1601–1606. 1996.PubMed/NCBI | |
|
Chen KH, He J, Wang DL, Cao JJ, Li MC, Zhao XM, Sheng X, Li WB and Liu WJ: Methylation-associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. Int J Oncol. 45:2511–2521. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M and Wilson SA: FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development. 138:1893–1902. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Qi C, Zhu YT, Hu L and Zhu YJ: Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer. 124:793–798. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zang ZJ, Cutcutache I, Poon SL, Zhang SL, Mcpherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al: Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 44:570–574. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mitamura T, Watari H, Wang L, Kanno H, Miyazaki M, Kitagawa M, Hassan MK, Dong P, Kimura T, Tanino M and Sakuragi N: MicroRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway. Mol Cancer. 13:972014. View Article : Google Scholar : PubMed/NCBI | |
|
Tan G, Cao X, Dai Q, Zhang B, Huang J, Xiong S, Zhang Y, Chen W, Yang J and Li H: A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget. 6:8676–8686. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shen S, Guo X, Yan H, Lu Y, Ji X, Li L, Liang T, Zhou D, Feng XH, Zhao JC, et al: A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res. 25:997–1012. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Wang Y, Mijiti M, Wang Z, Wu PF and Jiafu D: Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the Hippo signaling pathway. Biochem Biophys Res Commun. 465:194–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Riquelme I, Ili C, Roa JC and Brebi P: Long non-coding RNAs in gastric cancer: Mechanisms and potential applications. Oncotarget. 2016.doi: 10.18632/oncotarget.9396. | |
|
Gutschner T and Diederichs S: The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Wei G, Xia H, Yu H, Tang Q and Bi F: Down regulation of lincRNA-p21 contributes to gastric cancer development through Hippo-independent activation of YAP. Oncotarget. 8:63813–63824. 2017.PubMed/NCBI | |
|
Qu S, Yue Z, Shang R, Xuan Z, Song W, Kjems J and Li H: The emerging landscape of circular RNA in life processes. RNA Biol. 14:992–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI | |
|
He M, Zhou Z, Shah AA, Yang H, Chen Q and Wan Y: New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div. 11:42016. View Article : Google Scholar : PubMed/NCBI | |
|
Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A and Basu S: JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 1:e292010. View Article : Google Scholar : PubMed/NCBI | |
|
Jang SW, Yang SJ, Srinivasan S and Ye K: Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem. 282:30836–30844. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Collak FK, Yagiz K, Luthringer DJ, Erkaya B and Cinar B: Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1. J Biol Chem. 287:23698–23709. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bi W, Xiao L, Jia Y, Wu J, Xie Q, Ren J, Ji G and Yuan Z: c-Jun N-terminal kinase enhances MST1-mediated pro-apoptotic signaling through phosphorylation at serine 82. J Biol Chem. 285:6259–6264. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hata S, Hirayama J, Kajiho H, Nakagawa K, Hata Y, Katada T, Furutaniseiki M and Nishina H: A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem. 287:22089–22098. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, Meng S, Wang Y, Yuan Z and Bi W: SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene. 33:1468–1474. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, et al: Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell. 26:188–194. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kreppel LK, Blomberg MA and Hart GW: Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 272:9308–9315. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Singh JP, Zhang K, Wu J and Yang X: O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 356:244–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Starska K, Forma E, Brzezińska-Błaszczyk E, Lewy-Trenda I, Bryś M, Jóźwiak P and Krześlak A: Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer. Clin Exp Med. 15:455–468. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T and Mills IG: O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73:5277–5287. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, et al: The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 8:152802017. View Article : Google Scholar : PubMed/NCBI | |
|
Jennissen HP: Ubiquitin and the enigma of intracellular protein degradation. Eur J Biochem. 231:1–30. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Hicke L: Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2:195–201. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Berndsen CE and Wolberger C: New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 21:301–307. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Thrower JS, Hoffman L, Rechsteiner M and Pickart CM: Recognition of the polyubiquitin proteolytic signal. EMBO J. 19:94–102. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Yang J, Han L, Zhao K, Wu Q, Bao L, Li Z, Lv L and Li B: TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORγt in promoting IL-17A expression. J Biol Chem. 290:29086–29094. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WL, Wu CY, Wu J and Lin HK: Regulation of Akt signaling activation by ubiquitination. Cell Cycle. 9:487–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mukhopadhyay D and Riezman H: Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 315:201–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Terrell J, Shih S, Dunn R and Hicke L: A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell. 1:193–202. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Rome S, Meugnier E and Vidal H: The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Curr Opin Clin Nutr Metab Care. 7:249–254. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Izzi L and Attisano L: Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 23:2071–2078. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lan Q, Gao Y, Li Y, Hong X and Xu P: Progress in ubiquitin, ubiquitin chain and protein ubiquitination. Sheng Wu Gong Cheng Xue Bao. 32:14–30. 2016.(In Chinese). PubMed/NCBI | |
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q and Wan Y: The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6:622016. View Article : Google Scholar : PubMed/NCBI | |
|
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Huang W, Kanasaki K and Xu Y: The role of ubiquitination and sumoylation in diabetic nephropathy. Biomed Res Int 2014. 1606922014. | |
|
Chen Z and Lu W: Roles of ubiquitination and SUMOylation on prostate cancer: Mechanisms and clinical implications. Int J Mol Sci. 16:4560–4580. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hong L, Huang HC and Jiang ZF: Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res. 36:276–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Debald M, Schildberg FA, Linke A, Walgenbach K, Kuhn W, Hartmann G and Walgenbach-Brünagel G: Specific expression of k63-linked ubiquitination of calmodulin-like protein 5 in breast cancer of premenopausal patients. J Cancer Res Clin Oncol. 139:2125–2132. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zarrizi R, Menard JA, Belting M and Massoumi R: Deubiquitination of gamma-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 74:6499–6508. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Stevens PD, Yang H, Gulhati P, Wang W, Evers BM and Gao T: The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene. 32:471–478. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya S and Ghosh MK: Cell death and deubiquitinases: Perspectives in cancer. Biomed Res Int 2014. 4351972014. | |
|
Burger AM and Seth AK: The ubiquitin-mediated protein degradation pathway in cancer: Therapeutic implications. Eur J Cancer. 40:2217–2229. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hussain S, Zhang Y and Galardy PJ: DUBs and cancer: The role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. 8:1688–1697. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Surget S, Khoury MP and Bourdon JC: Uncovering the role of p53 splice variants in human malignancy: A clinical perspective. Oncotargets Ther. 7:57–68. 2013. | |
|
Canner JA, Sobo M, Ball S, Hutzen B, Deangelis S, Willis W, Studebaker AW, Ding K, Wang S, Yang D and Lin J: MI-63: A novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br J Cancer. 101:774–781. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Franklin DA, Dong J and Zhang Y: MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 74:7161–7167. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Brooks CL, Li M, Hu M, Shi Y and Gu W: The p53-Mdm2-HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene. 26:7262–7266. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hock AK, Vigneron AM, Carter S, Ludwig RL and Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 30:4921–4930. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-κB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Häcker H and Karin M: Regulation and function of IKK and IKK-related Kinases. Sci STKE 2006. re132006. | |
|
Fuchs S: Activation of β-Trcp ubiquitin ligases in cancers: Mechanisms and outcomes. Cancer Res. 67:2007. | |
|
Schweitzer K, Bozko PM, Dubiel W and Naumann M: CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26:1532–1541. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Harhaj EW and Dixit VM: Regulation of NF-κB by deubiquitinases. Immunol Rev. 246:107–124. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Luise C, Capra M, Donzelli M, Mazzarol G, Jodice MG, Nuciforo P, Viale G, Di Fiore PP and Confalonieri S: An atlas of altered expression of deubiquitinating enzymes in human cancer. PLoS One. 6:e158912011. View Article : Google Scholar : PubMed/NCBI | |
|
Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, et al: The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 66:8625–8632. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W and Boutros M: An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer. 129:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hilman D and Gat U: The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol. 28:2403–2417. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F and Barrufet LR: Protein kinases of the Hippo pathway: Regulation and substrates. Semin Cell Dev Biol. 23:770–784. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y and Nojima H: Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics. 63:263–270. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Nishiyama Y and Al E: A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett. 459:159–165. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Visser S and Yang X: LATS tumor suppressor: A new governor of cellular homeostasis. Cell Cycle. 9:3892–3903. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Furth N and Aylon Y: The LATS1 and LATS2 tumor suppressors: Beyond the Hippo pathway. Cell Death Differ. 24:1488–1501. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Li X, Huang J, Feng L, Dolinta KG and Chen J: Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics. 13:119–131. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lit LC, Scott S, Zhang H, Stebbing J, Photiou A and Giamas G: LATS2 is a modulator of estrogen receptor alpha. Anticancer Res. 33:53–63. 2013.PubMed/NCBI | |
|
Powzaniuk M, Mcelwee-Witmer S, Vogel RL, Hayami T, Rutledge SJ, Chen F, Harada S, Schmidt A, Rodan GA, Freedman LP and Bai C: The LATS2/KPM tumor suppressor is a negative regulator of the androgen receptor. Mol Endocrinol. 18:2011–2023. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z, et al: The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 541:541–545. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J, Carson DA and Guan KL: The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell. 167:1525–1539.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–79. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Boase NA and Kumar S: NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene. 557:113–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bernassola F, Karin M, Ciechanover A, Melino and Gerry: The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell. 14:10–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang B and Kumar S: Nedd4 and Nedd4-2: Closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 17:68–77. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Salah Z, Melino G and Aqeilan RI: Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res. 71:2010–2020. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Salah Z, Itzhaki E and Aqeilan RI: The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway. Oncotarget. 5:10886–10900. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yeung B, Ho KC and Yang X: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS One. 8:e610272013. View Article : Google Scholar : PubMed/NCBI | |
|
Bae SJ, Kim M, Kim SH, Kwon YE, Lee JH, Kim J, Chung CH, Lee WJ and Seol JH: NEDD4 controls intestinal stem cell homeostasis by regulating the Hippo signalling pathway. Nat Commun. 6:63142015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Huang J, Dong J and Pan D: Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nakayama K, Qi J and Ronai Z: The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res. 7:443–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, Gao R, Zhou C, Cao L, Liu J, et al: Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 17:95–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, Snuderl M, Ladanyi M, Hanemann CO, Zhou P, et al: Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DcAF1)-mediated inhibition of the hippo pathway kinases Latsl and 2 in the nucleus. Cancer Cell. 26:48–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J and Zhou P: DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 26:775–780. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Y, Kim W, Song Y, Kim JR, Cho K, Moon H, Ro SW, Seo E, Ryu YM, Myung SJ and Jho EH: Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci USA. 114:4691–4696. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Y and Jho EH: Deubiquitinase YOD1: The potent activator of YAP in hepatomegaly and liver cancer. BMB Rep. 50:281–282. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Toloczko A, Guo F, Yuen HF, Wen Q, Wood SA, Ong YS, Chan PY, Alli SA, Gunaratne J, Dunne MJ, et al: Deubiquitinating enzyme USP9X suppresses tumor growth via LATS kinase and core components of the hippo pathway. Cancer Res. 77:4921–4933. 2017.PubMed/NCBI | |
|
Thanh Nguyen H, Andrejeva D, Gupta R, Choudhary C, Hong X, Eichhorn PJ, Loya AC and Cohen SM: Deubiquitylating enzyme USP9× regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discov. 2:160012016. View Article : Google Scholar : PubMed/NCBI | |
|
Okada T, Gondo Y, Goto J, Kanazawa I, Hadano S and Ikeda JE: Unstable transmission of the RS447 human megasatellite tandem repetitive sequence that contains the USP17 deubiquitinating enzyme gene. Hum Genet. 110:302–313. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HT, Kugler JM and Cohen SM: DUB3 deubiquitylating enzymes regulate hippo pathway activity by regulating the stability of ITCH, LATS and AMOT proteins. PLoS One. 12:e01695872017. View Article : Google Scholar : PubMed/NCBI | |
|
Salah Z, Alian A and Aqeilan RI: WW domain-containing proteins: Retrospectives and the future. Front Biosci (Landmark Ed). 17:331–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC and Yaffe MB: TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ye F and Zhang M: Structures and target recognition modes of PDZ domains: Recurring themes and emerging pictures. Biochem J. 455:1–14. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M and Gettemans J: TAZ interacts with zonula occludens-1 and −2 proteins in a PDZ-1 dependent manner. FEBS Lett. 584:4175–4180. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jang EJ, Jeong H, Han KH, Kwon HM, Hong JH and Hwang ES: TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Cell Biol. 32:4925–4932. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H, Guan KL and Xu Y: Structural insights into the YAP and TEAD complex. Genes Dev. 24:235–240. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Howell M, Borchers C and Milgram SL: Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription. J Biol Chem. 279:26300–26306. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sudol M: Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 9:2145–2152. 1994.PubMed/NCBI | |
|
Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al: The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 147:759–772. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, Zhong Y, Wu CJ, Sadanandam A, Hu B, et al: Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 158:185–197. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Attisano L and Wrana JL: Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime Rep. 5:172013. View Article : Google Scholar : PubMed/NCBI | |
|
Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri A, et al: Rescue of Hippo co-activator yap1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 20:599–606. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Li L, Tumaneng K, Wang CY and Guan KL: A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24:72–85. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, et al: The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem. 285:37159–37169. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Deshaies RJ: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 15:435–467. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J and Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a Novel motif, the F-Box. Cell. 86:263–274. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Hart M, Concordet J, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R and Polakis P: The F-box protein β-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 9:207–210. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Fuchs SY, Spiegelman VS and Kumar KG: The many faces of beta-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene. 23:2028–2036. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J and Benjamin T: TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol. 27:6383–6395. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yim H, Sung CK, You J, Tian Y and Benjamin T: Nek1 and TAZ interact to maintain normal levels of polycystin 2. J Am Soc Nephrol. 22:832–837. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, Xiong Y, Lei QY and Guan KL: The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFβ-TrCP-dependent degradation in response to phosphatidylinositol 3-Kinase inhibition. J Biol Chem. 287:26245–26253. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JJ and Roberts TM: PI3 kinases in cancer: From oncogene artifact to leading cancer target. Sci STKE 2006. pe522006. | |
|
Wang Z, Inuzuka H, Zhong J, Wan L, Fukushima H, Sarkar FH and Wei W: Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett. 586:1409–1418. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tu K, Yang W, Li C, Zheng X, Lu Z, Guo C, Yao Y and Liu Q: Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer. 13:1102014. View Article : Google Scholar : PubMed/NCBI | |
|
Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM and Cohen SM: Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 33:2447–2457. 2015. View Article : Google Scholar | |
|
Linossi EM and Nicholson SE: The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life. 64:316–323. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Reddy BV and Irvine K: Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell. 24:459–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Liu T, Li Y, Wu C, Luo K, Yin Y, Chen Y, Nowsheen S, Wu J, Lou Z and Yuan J: The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization. Oncogene. 37:2422–2431. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Troyanovsky B, Levchenko T, Månsson G, Matvijenko O and Holmgren L: Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 152:1247–1254. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG and Holmgren L: Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 298:69–77. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmäki N, Bratt A, Dutta A and Holmgren L: p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J. 273:2000–2011. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zetter BR: Hold that line. Angiomotin regulates endothelial cell motility. J Cell Biol. 152:F35–F36. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q and Guan KL: Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C and Hong W: Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 286:7018–7026. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mana-Capelli S, Paramasivam M, Dutta S and Mccollum D: Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 25:1676–1685. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Paramasivam M, Sarkeshik A, Yates JR III, Fernandes MJ and Mccollum D: Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell. 22:3725–3733. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chan SW, Lim CJ, Guo F, Tan I, Leung T and Hong W: Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem. 288:37296–37307. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC, Liu Q, Shimono A, Sudol M, Holmgren L, et al: The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal. 6:ra772013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, An J, Zhang P, Xu C, Gao K, Wu D, Wang D, Yu H, Liu JO and Yu L: The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation. Biochem J. 444:279–289. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Adler JJ, Heller BL, Bringman LR, Ranahan WP, Cocklin RR, Goebl MG, Oh M, Lim HS, Ingham RJ and Wells CD: Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. J Biol Chem. 288:15181–15193. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Skouloudaki K and Walz G: YAP1 recruits c-Abl to protect angiomotin-like 1 from Nedd4-mediated degradation. PLoS One. 7:e357352012. View Article : Google Scholar : PubMed/NCBI | |
|
Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM and Kwon YG: The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal. 28:1642–1651. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim M, Kim M, Park SJ, Lee C and Lim DS: Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 17:64–78. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mouchantaf R, Azakir BA, McPherson PS, Millard SM, Wood SA and Angers A: The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J Biol Chem. 281:38738–38747. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HH, Mullett SJ and Stewart AF: Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. J Biol Chem. 279:30800–30806. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pobbati AV and Hong W: Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 14:390–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pobbati A, Chan SW, Lee I, Song H and Hong W: Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure. 20:1135–1140. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, Coindre JM and Aurias A: YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosom Cancer. 49:1161–1171. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Shen H, Withers HG, Yang N, Denson KE, Mussell AL, Truskinovsky A, Fan Q, Gelman IH, Frangou C and Zhang J: VGLL4 selectively represses YAP-dependent gene induction and tumorigenic phenotypes in breast cancer. Sci Rep. 7:61902017. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W, Yao F and He J, Lv B, Fang W, Zhu W, He G, Chen J and He J: Downregulation of VGLL4 in the progression of esophageal squamous cell carcinoma. Tumour Biol. 36:1289–1297. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jin HS, Park HS, Shin JH, Kim DH, Jun SH, Lee CJ and Lee TH: A novel inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-inhibitory function of IAPs by nuclear sequestration. Biochem Biophys Res Commun. 412:454–459. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang E, Shen B, Mu X, Qin Y, Zhang F, Liu Y, Xiao J, Zhang P, Wang C, Tan M and Fan Y: Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein. Am J Cancer Res. 6:2901–2909. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Smith AL, Mitchell PJ, Shipley J, Gusterson BA, Rogers MV and Crompton MR: Pez: A novel human cDNA encoding protein tyrosine phosphatase- and ezrin-like domains. Biochem Biophys Res Commun. 209:959–965. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Ogata M, Takada T, Mori Y, Oh-hora M, Uchida Y, Kosugi A, Miyake K and Hamaoka T: Effects of overexpression of PTP36, a putative protein tyrosine phosphatase, on cell adhesion, cell growth, and cytoskeletons in HeLa cells. J Biol Chem. 274:12905–12909. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Tonks NK: Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol. 7:833–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park JI and Chen J: PTPN14 is required for the density-dependent control of YAP1. Genes Dev. 26:1959–1971. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bosu DR and Kipreos ET: Cullin-RING ubiquitin ligases: Global regulation and activation cycles. Cell Div. 3:72008. View Article : Google Scholar : PubMed/NCBI | |
|
Jang LK, Lee ZH, Kim HH, Hill JM, Kim JD and Kwon BS: A novel leucine-rich repeat protein (LRR-1): Potential involvement in 4-1BB-mediated signal transduction. Mol Cells. 12:304–312. 2001.PubMed/NCBI | |
|
Walko G, Woodhouse S, Pisco AO, Rognoni E, Liakath-Ali K, Lichtenberger BM, Mishra A, Telerman SB, Viswanathan P, Logtenberg M, et al: A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun. 8:147442017. View Article : Google Scholar : PubMed/NCBI | |
|
Lim SK, Lu SY, Kang SA, Tan HJ, Li Z, Adrian Wee ZN, Guan JS, Reddy Chichili VP, Sivaraman J, Putti T, et al: Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TAZ transcriptional coactivator WBP2. Cancer Res. 76:6278–6289. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Avruch J, Xavier R, Bardeesy N, Zhang X, Praskova M, Zhou D and Xia F: Rassf family of tumor suppressor polypeptides. J Biol Chem. 284:11001–11005. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Volodko N, Gordon M, Salla M, Ghazaleh HA and Baksh S: RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett. 588:2671–2684. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Iwasa H, Hossain S and Hata Y: Tumor suppressor C-RASSF proteins. Cell Mol Life Sci. 75:1773–1787. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Agathanggelou A, Cooper WN and Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 65:3497–3508. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Richter AM, Pfeifer GP and Dammann RH: The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta 1796. 114–128. 2009. | |
|
Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH, Im CR, Lee JO, Yonehara S and Lim DS: Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 66:2562–2569. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Zhang X and Pfeifer GP: The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem. 286:6253–6261. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W and O'Neill E: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 27:962–975. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bitra A, Sistla S, Mariam J, Malvi H and Anand R: Rassf proteins as modulators of Mst1 kinase activity. Sci Rep. 7:450202017. View Article : Google Scholar : PubMed/NCBI | |
|
Donninger H, Allen N, Henson A, Pogue J, Williams A, Gordon L, Kassler S, Dunwell T, Latif F and Clark GJ: Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions. J Biol Chem. 286:18483–18491. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, et al: Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Curr Biol. 25:3019–3034. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Burbee D, Forgacs E, ZöchbauerMüller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 93:691–699. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Pefani DE, Pankova D, Abraham A, Grawenda A, Vlahov N, Scrace S and O'Neill E: TGF-β targets the Hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation. Mol Cell. 63:156–166. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Suryaraja R, Anitha M, Anbarasu K, Kumari G and Mahalingam S: The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis. 4:e5652013. View Article : Google Scholar : PubMed/NCBI | |
|
Kumari G, Singhal PK, Rao MR and Mahalingam S: Nuclear transport of Ras-associated tumor suppressor proteins: Different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol. 367:1294–1311. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Song MS, Song SJ, Kim SJ, Nakayama K, Nakayama KI and Lim D: Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition. Oncogene. 27:3176–3185. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Rong R, Sheikh MS and Huang Y: Cullin-4A·DNA damage-binding protein 1 E3 ligase complex targets tumor suppressor RASSF1A for degradation during mitosis. J Biol Chem. 286:6971–6978. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Li TT, Feng X, Hsiang E, Xiong Y, Guan KL and Lei QY: Targeted polyubiquitylation of RASSF1C by the mule and SCFβ-TrCP ligases in response to DNA damage. Biochem J. 441:227–236. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, et al: A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 16:108–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HT, Kugler JM, Loya AC and Cohen SM: USP21 regulates Hippo pathway activity by mediating MARK protein turnover. Oncotarget. 8:64095–64105. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, Stefan E, Bachmann VA, Oliva MA, Tiziana Storlazzi C, et al: Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun. 4:18222013. View Article : Google Scholar : PubMed/NCBI | |
|
Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY and Patterson C: Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol. 19:4535–4545. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Ren A, Yan G, You B and Sun J: Down-regulation of mammalian sterile 20-like kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res. 68:2266–2274. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, et al: The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci. 31:9611–9619. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H and Hata Y: A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem. 150:199–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Michels S and Schmidt-Erfurth U: Photodynamic therapy with verteporfin: A new treatment in ophthalmology. Semin Ophthalmol. 16:201–206. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO and Pan D: Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26:1300–1305. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW and Pereira SP: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 110:1698–1704. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kang W, Huang T, Zhou Y, Zhang J, Lung RWM, Tong JHM, Chan AWH, Zhang B, Wong CC, Wu F, et al: miR-375 is involved in Hippo pathway by targeting YAP1/TEAD4-CTGF axis in gastric carcinogenesis. Cell Death Dis. 9:922018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, et al: A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 25:166–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yu FX, Zhao B, Panupinthu N, Jewell J, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al: Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 150:780–791. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R and Ogretmen B: Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med. 4:761–775. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly MG, Mor G, Husband A, O'Malley DM, Baker L, Azodi M, Schwartz PE and Rutherford TJ: Phase II evaluation of phenoxodiol in combination with cisplatin or paclitaxel in women with platinum/taxane-refractory/resistant epithelial ovarian, fallopian tube, or primary peritoneal cancers. Int J Gynecol Cancer. 21:633–639. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Laubach JP, Mitsiades CS, Roccaro AM, Ghobrial IM, Anderson KC and Richardson PG: Clinical challenges associated with bortezomib therapy in multiple myeloma and Waldenstroms Macroglobulinemia. Leuk Lymphoma. 50:694–702. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Ren F, Wu Q, Jiang D, Li H, Peng Z, Wang J and Shi H: MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun. 449:432–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu JY, Heidersbach A, Kathiriya IS, Garay BI, Ivey KN, Srivastava D, Han Z and King IN: The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1. Development. 144:866–875. 2017. View Article : Google Scholar : PubMed/NCBI |