Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2019 Volume 41 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 41 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review)

  • Authors:
    • Xiaofeng Li
    • Wengui Xu
  • View Affiliations / Copyright

    Affiliations: Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
  • Pages: 2945-2956
    |
    Published online on: March 4, 2019
       https://doi.org/10.3892/or.2019.7041
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Impaired antitumor immunity or induced immunosuppression in the tumor microenvironment contributes significantly to tumor progression and resistance to immunotherapy. It is becoming increasingly recognized that dynamic metabolic programming orchestrates appropriate immune responses, whereas incorrect metabolic reprogramming may underlie aberrant immune remodeling. Furthermore, pathways that control cellular metabolism and immune cell function by transcriptional and post‑transcriptional mechanisms are intimately interlinked, including hypo­xia‑inducible factor 1α, c‑Myc and phosphatidylinositol 3‑kinase/protein kinase B/mammalian target of rapamycin signaling. Immunometabolism is an emerging research field involving investigation of the interaction between immunological and metabolic processes. It is likely that high levels of nutrient competition and metabolic interplay exist between tumor cells and infiltrating immune cells in the local tumor milieu, which consequently leads to a reduction in antitumor immunity or immune cell dysfunction. Recently, a metabolic molecular mechanism responsible for the tumorigenic capacity of cluster of differentiation (CD)147, which exhibits high expression on the surface of various malignant tumor cells and is associated with tumor progression via multiple non‑metabolic molecular mechanisms, was identified. The aim of the present review was to focus on the glycolytic mechanism mediated by the upregulation of CD147 in tumors and tumor‑imposed metabolic restrictions on tumor‑infiltrating immune cells, and the consequent immunological hyporesponsiveness. Cellular metabolism is becoming increasingly acknowledged as a key regulator of T‑cell function, specification and fate, and the manipulation of metabolic programming may elucidate therapeutic options for immunological disorders and tumor immunotherapy.
View Figures

Figure 1

Figure 2

View References

1 

Kareva I and Hahnfeldt P: The emerging ‘hallmarks’ of metabolic reprogramming and immune evasion: Distinct or linked? Cancer Res. 73:2737–2742. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956.PubMed/NCBI

3 

Li X, Peng J, Pang Y, Yu S, Yu X, Cheng PC, Wang WZ, Han WL, Zhang J, Yin YH and Zhang Y: Identification of a FOXP3+CD3+CD56+ population with immunosuppressive function in cancer tissues of human hepatocellular carcinoma. Sci Rep. 5:147572015. View Article : Google Scholar : PubMed/NCBI

4 

Kalathil SG and Thanavala Y: High immunosuppressive burden in cancer patients: A major hurdle for cancer immunotherapy. Cancer Immunol Immunother. 650:813–819. 2016. View Article : Google Scholar

5 

Wargo JA, Reddy SM, Reuben A and Sharma P: Monitoring immune responses in the tumor microenvironment. Curr Opin Immunol. 41:23–31. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Josefowicz SZ, Lu LF and Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Hansen M and Andersen MH: The role of dendritic cells in cancer. Semin Immunopathol. 9:307–316. 2017. View Article : Google Scholar

8 

Ni L and Dong C: New checkpoints in cancer immunotherapy. Immunol Rev. 276:52–65. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Speiser DE, Ho PC and Verdeil G: Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 16:599–611. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Siska PJ and Rathmell JC: T cell metabolic fitness in antitumor immunity. Trends Immunol. 36:257–264. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI

14 

MacIver NJ, Michalek RD and Rathmell JC: Metabolic regu-lation of T lymphocytes. Annu Rev Immunol. 31:259–283. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Gerriets VA and Rathmell JC: Metabolic pathways in T cell fate and function. Trends Immunol. 33:168–173. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, et al: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153:1239–1251. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, et al: The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20:61–72. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Pearce EL, Poffenberger MC, Chang CH and Jones RG: Fueling immunity: Insights into metabolism and lymphocyte function. Science. 42:12424542013. View Article : Google Scholar

19 

Chang CH and Pearce EL: Emerging concepts in immunotherapy-T cell metabolism as a therapeutic target. Nat Immunol. 17:364–368. 2016. View Article : Google Scholar : PubMed/NCBI

20 

O'Sullivan D and Pearce EL: Targeting T cell metabolism for therapy. Trends Immunol. 36:71–80. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, et al: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35:871–882. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR and Chi H: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 208:1367–1376. 2011. View Article : Google Scholar : PubMed/NCBI

23 

So L and Fruman DA: PI3K signalling in B- and T-lymphocytes: New developments and therapeutic advances. Biochem J. 442:465–841. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Han JM, Patterson SJ and Levings MK: The role of the PI3K signaling pathway in CD4+ T cell differentiation and function. Front Immunol. 3:2452012. View Article : Google Scholar : PubMed/NCBI

25 

Powell JD, Pollizzi KN, Heikamp EB and Horton MR: Regulation of immune responses by mTOR. Annu Rev Immunol. 30:39–68. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Chi HB: Regulation and function of mTOR signaling in T cell fate decisions. Nat Rev Immunol. 12:325–338. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Weidle UH, Scheuer W, Eggle D, Klostermann S and Stockinger H: Cancer-related issues of CD147. Cancer Genomics Proteomics. 7:157–169. 2010.PubMed/NCBI

28 

Riethdorf S, Reimers N, Assmann V, Kornfeld JW, Terracciano L, Sauter G and Pantel K: High incidence of EMMPRIN expression in human tumors. Int J Cancer. 119:1800–1810. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, Mi L, Wen N, Tian R, Wang L, et al: HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res. 5:605–614. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Zhang Q, Zhou J, Ku XM, Chen XG, Zhang L, Xu J, Chen GS, Li Q, Qian F, Tian R, et al: Expression of CD147 as a significantly unfavorable prognostic factor in hepatocellular carcinoma. Eur J Cancer Prev. 16:196–202. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Zheng HC, Takahashi H, Murai Y, Cui ZG, Nomoto K, Miwa S, Tsuneyama K and Takano Y: Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: A good marker for local invasion and prognosis. Br J Cancer. 95:1371–1378. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Tang Y, Nakada MT, Kesavan P, McCabe F, Millar H, Rafferty P, Bugelski P and Yan L: Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 65:3193–3199. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H, Cunningham M, Snyder LA, Bugelski P and Yan L: Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res. 4:371–377. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Kennedy KM and Dewhirst MW: Tumor metabolism of lactate: The influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6:127–148. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Halestrap AP and Price NT: The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation. Biochem J. 343:281–299. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Halestrap AP and Wilson MC: The monocarboxylate transporter family-role and regulation. IUBMB Life. 64:109–119. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN and Halestrap AP: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19:3896–3904. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Li XF, Yu XZ, Song XY, Dai D and Xu WG: The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget. 7:23141–23155. 2016.PubMed/NCBI

39 

Kroemer G and Pouyssegur J: Tumor Cell Metabolism: Cancer's Achilles' Heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2014. View Article : Google Scholar

41 

Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressors genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Tennant DA, Duran RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P and Mahdi AA: Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor. Oncotarget. 2:948–957. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, Chan CS, Hu W and Feng Z: Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget. 5:5535–5546. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Dang CV, Le A and Gao P: MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 15:6479–6483. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R and Dang CV: c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 94:6658–6663. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and Rathmell JC: Cutting Edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 186:3299–3303. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA and Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 275:21797–21800. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Dang CV, Kim JW, Gao P and Yustein J: The interplay between MYC and HIF in cancer. Nat Rev Cancer. 8:51–56. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, Matsumoto S, Sugiyama E, Ochiai A, Abe R, et al: Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem. 290:17495–17504. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Laplante M and Sabatini DM: mTOR signaling at a glance. J Cell Sci. 122:3589–3594. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J, Chang M, et al: Inhibition of aerobic glycolysis represses Akt/mTOR/HIF-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS One. 10:e01322852015. View Article : Google Scholar : PubMed/NCBI

57 

Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345:12506842014. View Article : Google Scholar : PubMed/NCBI

58 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Liu J, Zhang C, Hu WW and Feng ZH: Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 356:197–203. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Vousden KH and Ryan KM: p53 and metabolism. Nat Rev Cancer. 9:691–700. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Yeung SJ, Pan J and Lee MH: Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 65:3981–3999. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N and Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 277:21843–21850. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Warburg O, Gawehn K and Geissler AW: Metabolism of leukocytes. Z Naturforsch B. 13B:515–516. 1958.(In German). View Article : Google Scholar : PubMed/NCBI

65 

Jacobs SR, Michalek RD and Rathmell JC: IL-7 is essential for homeostatic control of T cell metabolism in vivo. J Immunol. 184:3461–3469. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Wang R and Green DR: Metabolic checkpoints in activated T cells. Nat Immunol. 13:907–915. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Vander-Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ and Pearce EL: Mitichondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 36:68–78. 2012. View Article : Google Scholar : PubMed/NCBI

69 

van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, Chang CH, Smith AM, Ai T, Faubert B, et al: CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA. 110:14336–14341. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, Mathews CK, Shewach DS and Nikiforov MA: Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle. 7:2392–2400. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Shen Y, Wei Y, Wang Z, Jing Y, He H, Yuan J, Li R, Zhao Q, Wei L, Yang T, et al: TGF-β regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell Physiol Biochem. 35:1623–1632. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Kalathil S, Lugade AA, Miller A, Iyer R and Thanavala Y: Higher frequencies of GARP+CTLA-4+Foxp3+ T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 73:2435–2444. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Galgani M, De Rosa V, La Cava A and Matarese G: Role of metabolism in the immunobiology of regulatory T cells. J Immunol. 197:2567–2575. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, Faicchia D, Marone G, Tramontano D, Corona M, et al: The protemic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity. 44:406–421. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Cham CM, Driessens G, O'Keefe JP and Gajewski TF: Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. J Immunol. 38:2438–2450. 2008.

77 

Siska PJ, van der Windt GJ, Kishton RJ, Cohen S, Eisner W, MacIver NJ, Kater AP, Weinberg JB and Rathmell JC: Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J Immunol. 197:2532–2540. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, et al: Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell. 146:772–784. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 3:227–242. 2013. View Article : Google Scholar

80 

Wieman HL, Wofford JA and Rathmell JC: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 18:1437–1446. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC and Powell JD: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 30:832–844. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Liu C, Chapman NM, Karmaus PW, Zeng H and Chi H: mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol. 7:837–847. 2015. View Article : Google Scholar

83 

Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, Carbone F, Fontana S, Horvath TL, La Cava A, et al: An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity. 33:929–941. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Mihaylova MM and Shaw RJ: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, Raissi TC, van der Windt GJ, Viollet B, Pearce EL, et al: The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 42:41–54. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Dunn GP, Bruce AT, Ikeda H, Old LJ and Schreiber RD: Cancer immunoediting: From immunosurveilance to tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI

87 

Liu Y and Cao XT: Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med. 94:509–522. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Wang TT, Liu GW and Wang RN: The intercellular metabolic interplay between tumor and immune cells. Front Immunol. 5:3582014. View Article : Google Scholar : PubMed/NCBI

89 

Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C and Toole BP: Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res. 69:1293–1301. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Hirschhaeuser F, Sattler UG and Mueller-Klieser W: Lactate: A metabolic key player in cancer. Cancer Res. 71:6921–6925. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, Critchlow SE, Roux D, Simon MP and Pouysségur J: CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA. 108:16663–16668. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, et al: Ketones and lactate increase cancer cell ‘stemness,’ driving recurrence, metastasis and poor clinical outcome in breast cancer: Achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 10:1271–1286. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA and Mueller-Klieser W: Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol. 39:453–463. 2011.PubMed/NCBI

94 

Wong TY, Phillips AO, Witowski J and Topley N: Glucose-mediated induction of TGF-β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney Int. 63:1404–1416. 2003. View Article : Google Scholar : PubMed/NCBI

95 

Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ, et al: Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med. 186:740–751. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Rudrabhatla SR, Mahaffey CL and Mummert ME: Tumor microenvironment modulates hyaluronan expression: The lactate effect. J Invest Dermatol. 126:1378–1387. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Gottfried E, Kreutz M and Mackensen A: tumor metabolism as modulator of immune response and tumor progression. Semin Cancer Biol. 22:335–341. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Husain Z, Huang Y, Seth P and Sukhatme VP: Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J Immunol. 191:1486–1495. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Feder-Mengus C, Ghosh S, Weber WP, Wyler S, Zajac P, Terracciano L, Oertli D, Heberer M, Martin I, Spagnoli GC, et al: Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer. 96:1072–1082. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E and Noessner E: Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer. 131:633–640. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B and Gillies RJ: Acid-mediated tumor invasion: A multidisciplinary study. Cancer Res. 66:5216–5223. 2006. View Article : Google Scholar : PubMed/NCBI

102 

McCarty MF and Whitaker J: Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev. 15:264–272. 2010.PubMed/NCBI

103 

Hu XY and Ivashkiv LB: Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity. 31:539–550. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Nathan I, Groopman JE, Quan SG, Bersch N and Golde DW: Immune (gamma) interferon produced by a human T-lymphoblast cell line. Nature. 292:842–844. 1981. View Article : Google Scholar : PubMed/NCBI

105 

Mekhail K, Gunaratnam L, Bonicalzi ME and Lee S: HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol. 6:642–647. 2004. View Article : Google Scholar : PubMed/NCBI

106 

McMahon S, Charbonneau M, Grandmont S, Richard DE and Dubois CM: Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem. 281:24171–24181. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP, et al: Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA. 109:E2784–E2793. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Hung SP, Yang MH, Tseng KF and Lee OK: Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant. 22:1869–1882. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Sanjabi S, Oh SA and Li MO: Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 9(pii): a0222362017. View Article : Google Scholar : PubMed/NCBI

110 

Barsoum IB, Smallwood CA, Siemens DR and Graham CH: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74:665–674. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J, Winter ME, Huynh TV, Sebald SM, Lee SJ, et al: TGF-β1-mediated SMAD3 enhances PD-1 expression on antigen-specific T Cells in cancer. Cancer Discov. 6:1366–1381. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Wei S, Shreiner AB, Takeshita N, Chen L, Zou W and Chang AE: Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor beta. Cancer Res. 68:5432–5438. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Mamori S, Nagatsuma K, Matsuura T, Ohkawa K, Hano H, Fukunaga M, Matsushima M, Masui Y, Fushiya N, Onoda H, et al: Useful detection of CD147 (EMMPRIN) for pathological diagnosis of early hepatocellular carcinoma in needle biopsy samples. World J Gastroenterol. 13:2913–2917. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Tang J, Wu YM, Zhao P, Yang XM, Jiang JL and Chen ZN: Overexpression of HAb18G/CD147 promotes invasion an metastasis via alpha3beta1 integrin mediated FAK-paxilli and FAK-PI3K-Ca2+ pathways. Cell Mol Life Sci. 65:2933–2942. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Dai JY, Dou KF, Wang CH, Zhao P, Lau WB, Tao L, Wu YM, Tang J, Jiang JL and Chen ZN: The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells. BMC Cancer. 9:337–346. 2009. View Article : Google Scholar : PubMed/NCBI

116 

Zhao P, Zhang W, Tang J, Ma XK, Dai JY, Li Y, Jiang JL, Zhang SH and Chen ZN: Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci. 101:387–395. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Baba M, Inoue M, Itoh K and Nishizawa Y: Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun. 374:111–116. 2008. View Article : Google Scholar : PubMed/NCBI

118 

Su J, Chen X and Kanekura TA: CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Lett. 273:140–147. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Huang QC, Li JB, Xing JL, Li WW, Li HW, Ke X, Zhang J, Ren TT, Shang YK, Yang HS, et al: CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J Hepatol. 61:859–866. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Ke X, Fei F, Chen YK, Xu L, Zhang Z, Huang QC, Zhang HX, Yang HS, Chen ZN and Xing JL: Hypoxia upregulates CD147 through a combined effect of HIF-1alpha and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis. 33:1598–1607. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S, Uemura Y, Sakaida N, Fujisawa J, Seki T, et al: Hepatitis B virus X protein shifts human hepatic transforming factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hetatitis B. Hepatology. 49:1203–1217. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Wu J, Ru NY, Zhang Y, Li Y, Wei D, Ren Z, Huang XF, Chen ZN and Bian H: HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene. 30:4410–4427. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI

126 

Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 52:230–233. 2008. View Article : Google Scholar

127 

Kong LM, Liao CG, Chen L, Yang HS, Zhang SH, Zhang Z, Bian HJ, Xing JL and Chen ZN: Promoter hypomethylation up-regulates CD147 expression through increasing Sp1 binding and associates with poor prognosis in human hepatocellular carcinoma. J Cell Mol Med. 15:1415–1428. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Guo H, Majmudar G, Jensen TC, Biswas C, Toole BP and Gordon MK: Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene. 220:99–108. 1998. View Article : Google Scholar : PubMed/NCBI

129 

Yang H, Zou W and Chen BL: Overexpression of CD147 in ovarian cancer is initiated by the hypoxic microenvironment. Cell Biol Int. 37:1139–1142. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Kong LM, Liao CG, Fei F, Guo X, Xing JL and Chen ZN: Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer. Cancer Sci. 101:1463–1470. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Kono K: Current status of cancer immunotherapy. J Stem Cells Regen Med. 10:8–13. 2014.PubMed/NCBI

132 

Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, et al: A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 59:81–88. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, Martínez A, Nuciforo P, Comerma L, Alos L, et al: Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma and melanoma. Cancer Res. 77:3540–3550. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, Lantz O, Romano E, Milder M, Buecher B, et al: Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: A proof-of-concept study. Ann Oncol. 28:1996–2001. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, et al: PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 6:66922015. View Article : Google Scholar : PubMed/NCBI

136 

Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Kizaka-Kondoh S, Tanaka S, Harada H and Hiraoka M: The HIF-1-active microenvironment: An environmental target for cancer therapy. Adv Drug Deliv Rev. 61:623–632. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Li B and Simon MC: Molecular pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res. 19:5835–5841. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Okkenhaug K, Graupera M and Vanhaesebroeck B: Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6:1090–1105. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI

142 

Troncone M, Cargnelli SM, Villani LA, Isfahanian N, Broadfield LA, Zychla L, Wright J, Pond G, Steinberg GR and Tsakiridis T: Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy; translational biology and rationale for current clinical trials. Oncotarget. 8:57733–57754. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Luchsinger JA, Ma Y, Christophi CA, Florez H, Golden SH, Hazuda H, Crandall J, Venditti E, Watson K, Jeffries S, et al: Diabetes Prevention Program Research Group: Metformin, lifestyle intervention, and cognition in the diabetes prevention program outcomes study. Diabetes Care. 40:958–965. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, et al: Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol. 40:685–693. 2005. View Article : Google Scholar : PubMed/NCBI

145 

Dowling RJ, Zakikhani M, Fantus IG, Pollak M and Sonenberg N: Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67:10804–10812. 2007. View Article : Google Scholar : PubMed/NCBI

146 

Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD and Evans JM: New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care. 32:1620–1625. 2009. View Article : Google Scholar : PubMed/NCBI

147 

Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN and Gonzalez-Angulo AM: Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 27:3297–3302. 2009. View Article : Google Scholar : PubMed/NCBI

148 

Christofk HR, Vander Heiden MG, Wu N, Asara JM and Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 452:181–186. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Bian H, Zheng JS, Nan G, Li R, Chen C, Hu CX, Zhang Y, Sun B, Wang XL, Cui SC, et al: Randomized trial of [131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst. 106(pii): dju2392014.PubMed/NCBI

150 

Calvaresi EC and Hergenrother PJ: Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci. 4:2319–2333. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Ciuleanu TE, Pavlovsky AV, Bodoky G, Garin AM, Langmuir VK, Kroll S and Tidmarsh GT: A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer. 45:1589–1596. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Baeuerle PA and Reinhardt C: Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69:4941–4944. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Lameris R, de Bruin RC, Schneiders FL, van Bergen en Henegouwen PM, Verheul HM, de Gruijl TD and van der Vliet HJ: Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol Hematol. 92:153–165. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Smith DM, Simon JK and Baker JR Jr: Applications of nanotechnology for immunology. Nat Rev Immunol. 13:592–605. 2013. View Article : Google Scholar : PubMed/NCBI

155 

Metcalfe SM and Fahmy TM: Targeted nanotherapy for induction of therapeutic immune responses. Trends Mol Med. 18:72–80. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X and Xu W: CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) . Oncol Rep 41: 2945-2956, 2019.
APA
Li, X., & Xu, W. (2019). CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) . Oncology Reports, 41, 2945-2956. https://doi.org/10.3892/or.2019.7041
MLA
Li, X., Xu, W."CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) ". Oncology Reports 41.5 (2019): 2945-2956.
Chicago
Li, X., Xu, W."CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) ". Oncology Reports 41, no. 5 (2019): 2945-2956. https://doi.org/10.3892/or.2019.7041
Copy and paste a formatted citation
x
Spandidos Publications style
Li X and Xu W: CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) . Oncol Rep 41: 2945-2956, 2019.
APA
Li, X., & Xu, W. (2019). CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) . Oncology Reports, 41, 2945-2956. https://doi.org/10.3892/or.2019.7041
MLA
Li, X., Xu, W."CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) ". Oncology Reports 41.5 (2019): 2945-2956.
Chicago
Li, X., Xu, W."CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review) ". Oncology Reports 41, no. 5 (2019): 2945-2956. https://doi.org/10.3892/or.2019.7041
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team