|
1
|
Handgretinger R, Lang P and André MC:
Exploitation of natural killer cells for the treatment of acute
leukemia. Blood. 127:3341–3349. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Moretta L: Dissecting CD56dim
human NK cells. Blood. 116:3689–3691. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kannan GS, Aquino-Lopez A and Lee DA:
Natural killer cells in malignant hematology: A primer for the
non-immunologist. Blood Rev. 31:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Farag SS, Fehniger TA, Ruggeri L, Velardi
A and Caligiuri MA: Natural killer cell receptors: New biology and
insights into the graft-versus-leukemia effect. Blood.
100:1935–1947. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sun PD: Structure and function of
natural-killer-cell receptors. Immunol Res. 27:539–548. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Willcox BE, Thomas LM and Bjorkman PJ:
Crystal structure of HLA-A2 bound to LIR-1, a host and viral major
histocompatibility complex receptor. Nat Immunol. 4:913–919. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Joyce MG, Tran P, Zhuravleva MA, Jaw J,
Colonna M and Sun PD: Crystal structure of human natural
cytotoxicity receptor NKp30 and identification of its ligand
binding site. Proc Natl Acad Sci USA. 108:6223–6228. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Suck G, Linn YC and Tonn T: Natural killer
cells for therapy of leukemia. Transfus Med Hemother. 43:89–95.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Parham P and Moffett A: Variable NK cell
receptors and their MHC class I ligands in immunity, reproduction
and human evolution. Nat Rev Immunol. 13:133–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Muntasel A, Ochoa MC, Cordeiro L,
Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M and
Melero I: Targeting NK-cell checkpoints for cancer immunotherapy.
Curr Opin Immunol. 45:73–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lanier LL: Natural killer cell receptor
signaling. Curr Opin Immunol. 15:308–314. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sentman CL, Barber MA, Barber A and Zhang
T: NK cell receptors as tools in cancer immunotherapy. Adv Cancer
Res. 95:249–292. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Vivier E, Nune JA and Vély F: Natural
killer cell signaling pathways. Science. 306:1517–1519. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Linnartz B, Wang Y and Neumann H:
Microglial immunoreceptor tyrosine-based activation and inhibition
motif signaling in neuroinflammation. Int J Alzheimers Dis.
2010:5874632010.PubMed/NCBI
|
|
15
|
Pugh JL, Nemat-Gorgani N, Norman PJ,
Guethlein LA and Parham P: Human NK cells downregulate Zap70 and
Syk in response to prolonged activation or DNA damage. J Immunol.
200:1146–1158. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Teresa Rios-Paredes: Use of NK cells in
haematological cancer therapy. Faculty of Medicine University of
Oslo. 2014.
|
|
17
|
Verneris MR and Miller JS: KIR B or not to
be?…that is the question for ALL. Blood. 124:2623–2624. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gaafar A, Sheereen A, Almohareb F, Eldali
A, Chaudhri N, Mohamed SY, Hanbali A, Shaheen M, Alfraih F, El
Fakih R, et al: Prognostic role of KIR genes and HLA-C after
hematopoietic stem cell transplantation in a patient cohort with
acute myeloid leukemia from a consanguineous community. Bone Marrow
Transplant. 58:1170–1179. 2018. View Article : Google Scholar
|
|
19
|
Long EO, Barber DF, Burshtyn DN, Faure M,
Peterson M, Rajagopalan S, Renard V, Sandusky M, Stebbins CC,
Wagtmann N, et al: Inhibition of natural killer cell activation
signals by killer cell immunoglobulin-like receptors (CD158).
Immunol Rev. 181:223–233. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ruggeri L, Capanni M, Urbani E, Perruccio
K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F,
et al: Effectiveness of donor natural killer cell alloreactivity in
mismatched hematopoietic transplants. Science. 295:2097–2100. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rajalingam R: Human diversity of killer
cell immunoglobulin-like receptors and disease. Korean J Hematol.
46:216–228. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fang F, Xiao W and Tian Z: NK cell-based
immunotherapy for cancer. Semin Immunol. 31:37–54. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ljunggren HG and Kärre K: In search of the
missing self-MHC molecules and NK cell recognition. Immunol Today.
11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bottino C, Dondero A, Bellora F, Moretta
L, Locatelli F, Pistoia V, Moretta A and Castriconi R: Natural
killer cells and neuroblastoma: tumor recognition, escape
mechanisms, and possible novel immunotherapeutic approaches. Front
Immunol. 5:562014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Carotta S: Targeting NK cells for
anticancer immunotherapy: Clinical and preclinical approaches.
Front Immunol. 7:1522016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Martinet L and Smyth MJ: Balancing natural
killer cell activation through paired receptors. Nat Rev Immunol.
15:243–254. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shimasaki N, Coustan-Smith E, Kamiya T and
Campana D: Expanded and armed natural killer cells for cancer
treatment. Cytotherapy. 18:1422–1434. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhu Y, Huang B and Shi J: Fas ligand and
lytic granule differentially control cytotoxic dynamics of natural
killer cell against cancer target. Oncotarget. 7:47163–47172.
2016.PubMed/NCBI
|
|
29
|
Childs RW and Carlsten M: Therapeutic
approaches to enhance natural killer cell cytotoxicity against
cancer: The force awakens. Nat Rev Drug Discov. 14:487–498. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nückel H, Switala M, Sellmann L, Horn PA,
Dürig J, Dührsen U, Küppers R, Grosse-Wilde H and Rebmann V: The
prognostic significance of soluble NKG2D ligands in B-cell chronic
lymphocytic leukemia. Leukemia. 24:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Burger JA and Gribben JG: The
microenvironment in chronic lymphocytic leukemia (CLL) and other B
cell malignancies: Insight into disease biology and new targeted
therapies. Semin Cancer Biol. 24:71–81. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Osman AE, AlJuryyan A, Alharthi H and
Almoshary M: Association between the killer cell
immunoglobulin-like receptor a haplotype and childhood acute
lymphoblastic leukemia. Hum Immunol. 78:510–514. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Boissel N, Rea D, Tieng V, Dulphy N, Brun
M, Cayuela JM, Rousselot P, Tamouza R, Le Bouteiller P, Mahon FX,
et al: BCR/ABL oncogene directly controls MHC class I chain-related
molecule A expression in chronic myelogenous leukemia. J Immunol.
176:5108–5116. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Maru Y: Molecular biology of chronic
myeloid leukemia. Cancer Sci. 103:1601–1610. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
https://www.ncbi.nlm.nih.gov/books/NBK65916/
|
|
36
|
Danier AC, de Melo RP, Napimoga MH and
Laguna-Abreu MT: The role of natural killer cells in chronic
myeloid leukemia. Rev Bras Hematol Hemoter. 33:216–220. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huang CH, Liao YJ, Fan TH, Chiou TJ, Lin
YH and Twu YC: A Developed NK-92MI cell line with
Siglec-7neg phenotype exhibits high and sustainable
cytotoxicity against leukemia cells. Int J Mol Sci. 19:E10732018.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
O'Brien SG, Guilhot F, Larson RA, Gathmann
I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A,
Hughes T, et al: Imatinib compared with interferon and low-dose
cytarabine for newly diagnosed chronic-phase chronic myeloid
leukemia. N Engl J Med. 348:994–1004. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rossignol A, Levescot A, Jacomet F, Robin
A, Basbous S, Giraud C, Roy L, Guilhot F, Turhan AG, Barra A, et
al: Evidence for BCR-ABL-dependent dysfunctions of iNKT cells from
chronic myeloid leukemia patients. Eur J Immunol. 42:1870–1875.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Heaney NB and Holyoake TL: Therapeutic
targets in chronic myeloid leukaemia. Hematol Oncol. 25:66–75.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pophali PA and Patnaik MM: The role of new
tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J.
22:40–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shapira T, Pereg D and Lishner M: How I
treat acute and chronic leukemia in pregnancy. Blood Rev.
22:247–259. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Goldman JM: How I treat chronic myeloid
leukemia in the imatinib era. Blood. 110:2828–2837. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Garderet L, Santacruz R, Barbu V, van den
Akker J, Carbonne B and Gorin NC: Two successful pregnancies in
chronic myeloid leukemia patient treated with imatinib.
Haematologica. 92:e9–e10. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Roth MS and Foon KA: Alpha interferon in
the treatment of hematologic malignancies. Am J Med. 81:871–882.
1986. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Giallongo C, La Cava P, Tibullo D,
Parrinello N, Barbagallo I, Del Fabro V, Stagno F, Conticello C,
Romano A, Chiarenza A, et al: Imatinib increases cytotoxicity of
melphalan and their combination allows an efficient killing of
chronic myeloid leukemia cells. Eur J Haematol. 86:216–225. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Millicovsky G, DeSesso JM, Kleinman LI and
Clark KE: Effects of hydroxyurea on hemodynamics of pregnant
rabbits: A maternally mediated mechanism of embryotoxicity. Am J
Obstet Gynecol. 140:747–752. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Thauvin-Robinet C, Maingueneau C, Robert
E, Elefant E, Guy H, Caillot D, Casasnovas RO, Douvier S and
Nivelon-Chevallier A: Exposure to hydroxyurea during pregnancy: A
case series. Leukemia. 15:1309–1311. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yellu M, Pinkard S, Ghose A and Medlin S:
CML in pregnancy: A case report using leukapheresis and literature
review. Transfus Apher Sci. 53:289–292. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ali R, Ozkalemkaş F, Ozkocaman V, Ozçelik
T, Ozan U, Kimya Y and Tunali A: Successful pregnancy and delivery
in a patient with chronic myelogenous leukemia (CML), and
management of CML with leukapheresis during pregnancy: A case
report and review of the literature. Jpn J Clin Oncol. 34:215–217.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cayssials E and Guilhot F: Chronic myeloid
leukemia: Immunobiology and novel immunotherapeutic approaches.
BioDrugs. 31:143–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mahoney KM, Rennert PD and Freeman GJ:
Combination cancer immunotherapy and new immunomodulatory targets.
Nat Rev Drug Discov. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mumprecht S, Schürch C, Schwaller J,
Solenthaler M and Ochsenbein AF: Programmed death 1 signaling on
chronic myeloid leukemia-specific T cells results in T-cell
exhaustion and disease progression. Blood. 114:1528–1536. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang B, Chu S, Agarwal P, Campbell VL,
Hopcroft L, Jørgensen HG, Lin A, Gaal K, Holyoake TL and Bhatia R:
Inhibition of interleukin-1 signaling enhances elimination of
tyrosine kinase inhibitor-treated CML stem cells. Blood.
128:2671–2682. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ågerstam H, Hansen N, von Palffy S, Sandén
C, Reckzeh K, Karlsson C, Lilljebjörn H, Landberg N, Askmyr M,
Högberg C, et al: IL1RAP antibodies block IL-1-induced expansion of
candidate CML stem cells and mediate cell killing in xenograft
models. Blood. 128:2683–2693. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Arranz L, Arriero MD and Villatoro A:
Interleukin-1β as emerging therapeutic target in hematological
malignancies and potentially in their complications. Blood Rev.
31:306–317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhao K, Yuan S, Yin L, Xia J and Xu K:
Potential efficacy of human IL-1RAP specific CAR-T cell in
eliminating leukemic stem cells of chronic myeloid leukemia. J
Leukemia. 5:2322017. View Article : Google Scholar
|
|
58
|
Stramucci L and Perrotti D: Twisting IL-1
signaling to kill CML stem cells. Blood. 128:2592–2593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tarafdar A, Hopcroft LE, Gallipoli P,
Pellicano F, Cassels J, Hair A, Korfi K, Jørgensen HG, Vetrie D,
Holyoake TL, et al: CML cells actively evade host immune
surveillance through cytokine-mediated downregulation of MHCII
expression. Blood. 129:199–208. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Levescot A, Flamant S, Basbous S, Jacomet
F, Féraud O, Anne Bourgeois E, Bonnet ML, Giraud C, Roy L, Barra A,
et al: BCR-ABL-induced deregulation of the IL-33/ST2 pathway in
CD34+ progenitors from chronic myeloid leukemia
patients. Cancer Res. 74:2669–2676. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rocca S, Carrà G, Poggio P, Morotti A and
Brancaccio M: Targeting few to help hundreds: JAK, MAPK and ROCK
pathways as druggable targets in atypical chronic myeloid leukemia.
Mol Cancer. 17:402018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pierson BA and Miller JS: The role of
autologous natural killer cells in chronic myelogenous leukemia.
Leuk Lymphoma. 27:387–399. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Verfaillie C, Kay N, Miller W and McGlave
P: Diminished A-LAK cytotoxicity and proliferation accompany
disease progression in chronic myelogenous leukemia. Blood.
76:401–408. 1990.PubMed/NCBI
|
|
64
|
Pawelec G, Schneider E, Ehninger G,
Rehbein A and Schmidt H: Partial correction of defective generation
of lymphokine-activated killer cells in patients with chronic
myelogenous leukaemia after in vivo treatment with interferon-alpha
(Wellferon). Cancer Immunol Immunother. 29:63–66. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mustjoki S, Ekblom M, Arstila TP, Dybedal
I, Epling-Burnette PK, Guilhot F, Hjorth-Hansen H, Höglund M,
Kovanen P, Laurinolli T, et al: Clonal expansion of T/NK-cells
during tyrosine kinase inhibitor dasatinib therapy. Leukemia.
23:1398–1405. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kijima M, Gardiol N and Held W: Natural
killer cell mediated missing-self recognition can protect mice from
primary chronic myeloid leukemia in vivo. PLoS One. 6:e276392011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhao XY, Chang YJ, Xu LP, Zhang XH, Liu
KY, Li D and Huang XJ: HLA and KIR genotyping correlates with
relapse after T-cell-replete haploidentical transplantation in
chronic myeloid leukaemia patients. Br J Cancer. 111:1080–1088.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Necchi A, Lanza F, Rosti G, Martino M,
Farè E, Pedrazzoli P, European Society for Blood, Marrow
Transplantation and Solid Tumors Working Party; (EBMT-STWP) the
Italian Germ Cell Cancer Group (IGG), : High-dose chemotherapy for
germ cell tumors: Do we have a model? Expert Opin Biol Ther.
15:33–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zahid U, Akbar F, Amaraneni A, Husnain M,
Chan O, Riaz IB, McBride A, Iftikhar A and Anwer F: A review of
autologous stem cell transplantation in lymphoma. Curr Hematol
Malig Rep. 12:217–226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kim S, Poursine-Laurent J, Truscott SM,
Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S,
Hansen TH, et al: Licensing of natural killer cells by host major
histocompatibility complex class I molecules. Nature. 436:709–713.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sivori S, Carlomagno S, Falco M, Romeo E,
Moretta L and Moretta A: Natural killer cells expressing the
KIR2DS1-activating receptor efficiently kill T-cell blasts and
dendritic cells: Implications in haploidentical HSCT. Blood.
117:4284–4292. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gabriel IH, Sergeant R, Szydlo R, Apperley
JF, DeLavallade H, Alsuliman A, Khoder A, Marin D, Kanfer E, Cooper
N, et al: Interaction between KIR3DS1 and HLA-Bw4
predicts for progression-free survival after autologous stem cell
transplantation in patients with multiple myeloma. Blood.
116:2033–2039. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Middleton D, Diler AS, Meenagh A, Sleator
C and Gourraud PA: Killer immunoglobulin-like receptors (KIR2DL2
and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect
against chronic myeloid leukaemia. Tissue Antigens. 73:553–560.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Marin D, Gabriel IH, Ahmad S, Foroni L, de
Lavallade H, Clark R, O'Brien S, Sergeant R, Hedgley C, Milojkovic
D, et al: KIR2DS1 genotype predicts for complete cytogenetic
response and survival in newly diagnosed chronic myeloid leukemia
patients treated with imatinib. Leukemia. 26:296–302. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kreutzman A, Jaatinen T, Greco D, Vakkila
E, Richter J, Ekblom M, Hjorth-Hansen H, Stenke L, Melo T, Paquette
R, et al: Killer-cell immunoglobulin-like receptor gene profile
predicts good molecular response to dasatinib therapy in chronic
myeloid leukemia. Exp Hematol. 40:906–913. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
La Nasa G, Caocci G, Littera R, Atzeni S,
Vacca A, Mulas O, Langiu M, Greco M, Orrù S, Orrù N, et al:
Homozygosity for killer immunoglobin-like receptor haplotype A
predicts complete molecular response to treatment with tyrosine
kinase inhibitors in chronic myeloid leukemia patients. Exp
Hematol. 41:424–431. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhao XY, Chang YJ and Huang XJ:
Differential expression levels of killer immunoglobin-like receptor
genotype in patients with hematological malignancies between
high-risk and standard-risk groups. Zhongguo Shi Yan Xue Ye Xue Za
Zhi. 16:746–749. 2008.(In Chinese). PubMed/NCBI
|