Methylation of the promoter region of the MTRR gene in childhood acute lymphoblastic leukemia

  • Authors:
    • Jun Bai
    • Lijuan Li
    • Yi Li
    • Qunfei Chen
    • Liansheng Zhang
    • Xiaodong Xie
  • View Affiliations

  • Published online on: April 12, 2019     https://doi.org/10.3892/or.2019.7114
  • Pages: 3488-3498
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epigenetic analysis of the association between the methylation status of the promoter region of the MTRR (5‑methyltetrahydrofolate‑homocysteine methyltransferase reductase) gene and the risk of acute lymphoblastic leukemia (ALL) in children plays an important role in the early diagnosis, assessment of the malignant degree, treatment and evaluation of the risk of relapse and prognosis of the disease. In the present study, RT‑qPCR was used to detect the mRNA levels of the MTRR and MTHFR (methylenetetrahydrofolate reductase) genes in the bone marrow of 20 ALL patients and 20 age‑ and sex‑matched controls with normal bone marrow. The methylation pattern of the MTRR promoter region in eligible DNA samples was quantitatively analyzed using MALDI‑TOF MS. The results indicated that the mRNA expression level of MTRR in the bone marrow from children with ALL was lower than that in the control samples (P<0.05), but no significant difference was detected in the MTHFR gene between the two groups (P>0.05). According to the risk classification of ALL in children with high, medium and low risk, the low‑risk group had a higher methylation rate of CpG_6 compared to the medium‑risk group. However, the medium‑risk group had a higher CpG_46.47 methylation rate compared to the low‑risk group. The methylation rates of CpG_26 and CpG_46.47 in the high‑risk group were higher than these rates in the low‑risk group, while the CpG_42.23.44 methylation rate was lower in the high‑risk group than in the low‑risk group (P<0.05). The methylation rates at CpG_1, CpG_10, CpG_48 sites, score and the average methylation rate in the ALL‑H (high) group (≥50x109/l) were lower than these in the ALL‑NH (not high) group (<50x109/l) and the control group (P<0.05). We conclude that abnormal MTRR mRNA expression and the methylation of the MTRR promoter can be used to classify the risk of ALL in children.

References

1 

Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, Flaegstad T, Forestier E, Frost BM, Harila-Saari A, et al: Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 14:r1052013. View Article : Google Scholar : PubMed/NCBI

2 

Loghavi S, Kutok JL and Jorgensen JL: B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol. 144:393–410. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, Vora A, Baruchel A, Silverman LB, Schmiegelow K, et al: Childhood acute lymphoblastic leukemia: Progress through collaboration. J Clin Oncol. 33:2938–2948. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Cooper SL and Brown PA: Treatment of pediatric acute lymphoblastic leukemia. Haematologica. 93:1124–1128. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Pui CH, Carroll WL, Meshinchi S and Arceci RJ: Biology, risk stratification, and therapy of pediatric acute leukemias: An update. J Clin Oncol. 29:551–561. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Harrison CJ: Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 144:147–156. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Arico M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S, Manabe A, Saha V, Baruchel A, Vettenranta K, et al: Clinical outcome of children with newly diagnosed philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 28:4755–4761. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, et al: Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 446:758–764. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, et al: Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 360:470–480. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Nebbioso A, Tambaro FP, Dell'Aversana C and Altucci L: Cancer epigenetics: Moving forward. PLoS Genet. 14:e10073622018. View Article : Google Scholar : PubMed/NCBI

11 

Burke MJ and Bhatla T: Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr. 2:422014. View Article : Google Scholar : PubMed/NCBI

12 

Davidsson J, Lilljebjörn H, Andersson A, Veerla S, Heldrup J, Behrendtz M, Fioretos T and Johansson B: The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet. 18:4054–4065. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Esteller M: Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet. 1:R50–R59. 2007. View Article : Google Scholar

14 

Hale V, Hale GA, Brown PA and Amankwah EK: A review of DNA methylation and microRNA expression in recurrent pediatric acute leukemia. Oncology. 92:61–67. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Navarrete-Meneses MDP and Pérez-Vera P: Epigenetic alterations in acute lymphoblastic leukemia. Bol Med Hosp Infant Mex. 74:243–264. 2017.(In Spanish). PubMed/NCBI

16 

Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, de Menezes RX, Pieters R and Stam RW: Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood. 114:5490–5498. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Borssén M, Palmqvist L, Karrman K, Abrahamsson J, Behrendtz M, Heldrup J, Forestier E, Roos G and Degerman S: Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS One. 8:e653732013. View Article : Google Scholar : PubMed/NCBI

18 

Borssén M, Haider Z, Landfors M, Norén-Nyström U, Schmiegelow K, Åsberg AE, Kanerva J, Madsen HO, Marquart H, Heyman M, et al: DNA methylation adds prognostic value to minimal residual disease status in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 63:1185–1192. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Amigou A, Rudant J, Orsi L, Goujon-Bellec S, Leverger G, Baruchel A, Bertrand Y, Nelken B, Plat G, Michel G, et al: Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: The ESCALE study (SFCE). Cancer Causes Control. 23:1265–1277. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Duthie SJ, Narayanan S, Blum S, Pirie L and Brand GM: Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 37:245–251. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Refsum H, Wesenberg F and Ueland PM: Plasma homocysteine in children with acute lymphoblastic leukemia: Changes during a chemotherapeutic regimen including methotrexate. Cancer Res. 51:828–835. 1991.PubMed/NCBI

22 

Pinnix CC, Chi L, Jabbour EJ, Milgrom SA, Smith GL, Daver N, Garg N, Cykowski MD, Fuller G, Cachia D, et al: Dorsal column myelopathy after intrathecal chemotherapy for leukemia. Am J Hematol. 92:155–160. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Metayer C, Milne E, Dockerty JD, Clavel J, Pombo-de-Oliveira MS, Wesseling C, Spector LG, Schüz J, Eleni P, Sameera E, et al: Maternal supplementation with folic acid and other vitamins and risk of leukemia in the offspring: A childhood leukemia international consortium study. Epidemiology. 25:811–822. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Brunaud L, Alberto JM, Ayav A, Gérard P, Namour F, Antunes L, Braun M, Bronowicki JP, Bresler L and Guéant JL: Effects of vitamin B12 and folate deficiencies on DNA methylation and carcinogenesis in rat liver. Clin Chem Lab Med. 41:1012–1019. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Wu M and Li Z: Interpretation of the recommendations for the diagnosis and treatment of children with acute lymphocytic leukemia (four revisions). Chin J Pediatr. 52:645–648. 2014.

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Sambrook J and Russell DW: Preparation and analysis of eukaryotic genomic DNA (Chapter 6). Molecular Cloning - A Laboratory Manual. 1. 3rd. Cold Spring Harbor Laboratory Press; New York, NY: pp. 4–12. 2001

28 

Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE and Reik W: Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 463:1101–1105. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Iacobucci I and Mullighan CG: Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 35:975–983. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, et al: Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 10:433–444. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Seremak-Mrozikiewicz A, Bogacz A, Bartkowiak-Wieczorek J, Wolski H, Czerny B, Gorska-Paukszta M and Drews K: The importance of MTHFR, MTR, MTRR and CSE expression levels in Caucasian women with preeclampsia. Eur J Obstet Gynecol Reprod Biol. 188:113–117. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Guest EM and Stam RW: Updates in the biology and therapy for infant acute lymphoblastic leukemia. Curr Opin Pediatr. 29:20–26. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wang J, Guise CP, Dachs GU, Phung Y, Hsu AH, Lambie NK, Patterson AV and Wilson WR: Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5. Biochem Pharmacol. 91:436–446. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Wong NC, Meredith GD, Marnellos G, Dudas M, Parkinson- Bates M, Halemba MS, Chatterton Z, Maksimovic J, Ashley DM, Mechinaud F, et al: Paediatric leukaemia DNA methylation profiling using MBD enrichment and SOLiD sequencing on archival bone marrow smears. Gigascience. 4:112015. View Article : Google Scholar : PubMed/NCBI

35 

Court EL, Davidson K, Smith MA, Inman L, Marriott SA, Smith JG and Pallister CJ: C-kit mutation screening in patients with acute myeloid leukaemia: Adaptation of a Giemsa-stained bone-marrow smear DNA extraction technique. Br J Biomed Sci. 58:76–84. 2001.PubMed/NCBI

36 

Dubbs SB: Rapid Fire: Tumor lysis syndrome. Emerg Med Clin North Am. 36:517–525. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Bai, J., Li, L., Li, Y., Chen, Q., Zhang, L., & Xie, X. (2019). Methylation of the promoter region of the MTRR gene in childhood acute lymphoblastic leukemia. Oncology Reports, 41, 3488-3498. https://doi.org/10.3892/or.2019.7114
MLA
Bai, J., Li, L., Li, Y., Chen, Q., Zhang, L., Xie, X."Methylation of the promoter region of the MTRR gene in childhood acute lymphoblastic leukemia". Oncology Reports 41.6 (2019): 3488-3498.
Chicago
Bai, J., Li, L., Li, Y., Chen, Q., Zhang, L., Xie, X."Methylation of the promoter region of the MTRR gene in childhood acute lymphoblastic leukemia". Oncology Reports 41, no. 6 (2019): 3488-3498. https://doi.org/10.3892/or.2019.7114