|
1
|
Shi Z, Li Z, Li ZJ, Cheng K, Du Y, Fu H
and Khuri FR: Cables1 controls p21/Cip1 protein stability by
antagonizing proteasome subunit alpha type 3. Oncogene.
34:2538–2545. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jiang QW, Cheng KJ, Mei XL, Qiu JG, Zhang
WJ, Xue YQ, Qin WM, Yang Y, Zheng DW, Chen Y, et al: Synergistic
anticancer effects of triptolide and celastrol, two main compounds
from thunder god vine. Oncotarget. 6:32790–32804. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang JY, Wu HY, Xia XK, Liang YJ, Yan YY,
She ZG, Lin YC and Fu LW: Anthracenedione derivative 1403P-3
induces apoptosis in KB and KBv200 cells via reactive oxygen
species-independent mitochondrial pathway and death receptor
pathway. Cancer Biol Ther. 6:1413–1421. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang JY, Tao LY, Liang YJ, Yan YY, Dai
CL, Xia XK, She ZG, Lin YC and Fu LW: Secalonic acid D induced
leukemia cell apoptosis and cell cycle arrest of G(1) with
involvement of GSK-3beta/beta-catenin/c-Myc pathway. Cell Cycle.
8:2444–2450. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang JY, Huang WJ, Sun HM, Liu Y, Zhao
XQ, Tang SL, Sun MN, Wang S, Li JJ, Zhang LL, et al: Structure
identification and in vitro anticancer activity of
lathyrol-3-phenylacetate-5,15-diacetate. Molecules. 22:e14122017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang J, Lai Z, Huang W, Ling H, Lin M,
Tang S, Liu Y and Tao Y: Apicidin inhibited proliferation and
invasion and induced apoptosis via mitochondrial pathway in
non-small cell lung cancer GLC-82 cells. Anticancer Agents Med
Chem. 17:1374–1382. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shi Z, Peng XX, Kim IW, Shukla S, Si QS,
Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, et al: Erlotinib
(Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B
member 1 and ATP-binding cassette subfamily G member 2-mediated
drug resistance. Cancer Res. 67:11012–11020. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang JY, Mi YJ, Chen SP, Wang F, Liang
YJ, Zheng LS, Shi CJ, Tao LY, Chen LM, Chen HB and Fu LW: Euphorbia
factor L1 reverses ABCB1-mediated multidrug resistance involving
interaction with ABCB1 independent of ABCB1 downregualtion. J Cell
Biochem. 112:1076–1083. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lin M, Bi H, Yan Y, Huang W, Zhang G,
Zhang G, Tang S, Liu Y, Zhang L, Ma J and Zhang J: Parthenolide
suppresses non-small cell lung cancer GLC-82 cells growth via
B-Raf/MAPK/Erk pathway. Oncotarget. 8:23436–23447. 2017.PubMed/NCBI
|
|
10
|
McLoughlin NM, Mueller C and Grossmann TN:
The therapeutic potential of PTEN modulation: Targeting strategies
from gene to protein. Cell Chem Biol. 25:19–29. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang JY, Lin MT, Tung HY, Tang SL, Yi T,
Zhang YZ, Tang YN, Zhao ZZ and Chen HB: Bruceine D induces
apoptosis in human chronic myeloid leukemia K562 cells via
mitochondrial pathway. Am J Cancer Res. 6:819–826. 2016.PubMed/NCBI
|
|
12
|
Zhang JY, Tao LY, Liang YJ, Chen LM, Mi
YJ, Zheng LS, Wang F, She ZG, Lin YC, To KK and Fu LW:
Anthracenedione derivatives as anticancer agents isolated from
secondary metabolites of the mangrove endophytic fungi. Mar Drugs.
8:1469–1481. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot
CV, Zhao Y, Reynolds S, Cheng H, Rupaimoole R, et al: Integrated
analyses identify a master microRNA regulatory network for the
mesenchymal subtype in serous ovarian cancer. Cancer cell.
23:186–199. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tao YW, Lin YC, She ZG, Lin MT, Chen PX
and Zhang JY: Anticancer activity and mechanism investigation of
beauvericin isolated from secondary metabolites of the mangrove
endophytic fungi. Anticancer Agents Med Chem. 15:258–266. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN,
Tang SL, Yang ZJ, Zhao ZZ and Chen HB: Combinational treatment of
curcumin and quercetin against gastric cancer MGC-803 cells in
vitro. Molecules. 20:11524–11534. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Su J, Zhou X, Wang L, Yin X and Wang Z:
Curcumin inhibits cell growth and invasion and induces apoptosis
through down-regulation of Skp2 in pancreatic cancer cells. Am J
Cancer Res. 6:1949–1962. 2016.PubMed/NCBI
|
|
17
|
Sharma V and Pathak K: Effect of hydrogen
bond formation/replacement on solubility characteristics, gastric
permeation and pharmacokinetics of curcumin by application of
powder solution technology. Acta Pharm Sin B. 6:600–613. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fan Y, Liu Y, Zhang L, Cai F, Zhu L and Xu
J: C0818, a novel curcumin derivative, interacts with Hsp90 and
inhibits Hsp90 ATPase activity. Acta Pharm Sin B. 7:91–96. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bian EB, Xiong ZG and Li J: New advances
of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA
interactions. J Cell Physiol. 234:2194–2203. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Castro-Oropeza R, Melendez-Zajgla J,
Maldonado V and Vazquez-Santillan K: The emerging role of lncRNAs
in the regulation of cancer stem cells. Cell Oncol (Dordr).
41:585–603. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
An X, Sarmiento C, Tan T and Zhu H:
Regulation of multidrug resistance by microRNAs in anti-cancer
therapy. Acta Pharm Sin B. 7:38–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ferrajoli A, Ivan C, Ciccone M, Shimizu M,
Kita Y, Ohtsuka M, D'Abundo L, Qiang J, Lerner S, Nouraee N, et al:
Epstein-Barr virus microRNAs are expressed in patients with chronic
lymphocytic leukemia and correlate with overall survival.
EBioMedicine. 2:572–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gong C, Tan W, Chen K, You N, Zhu S, Liang
G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a
BCSC-associated microrna signature in hormone receptor-positive
HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stark MS, Klein K, Weide B, Haydu LE,
Pflugfelder A, Tang YH, Palmer JM, Whiteman DC, Scolyer RA, Mann
GJ, et al: The prognostic and predictive value of melanoma-related
microRNAs using tissue and serum: A microRNA expression analysis.
EBioMedicine. 2:671–680. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Montani F and Bianchi F: Circulating
cancer biomarkers: The macro-revolution of the micro-RNA.
EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shah MY, Ferrajoli A, Sood AK,
Lopez-Berestein G and Calin GA: microRNA therapeutics in cancer-an
emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dou Z, Lin S, Dai C, Lu Y, Tian T, Wang M,
Liu X, Zheng Y, Xu P, Li S, et al: Pooling-analysis for diagnostic
and prognostic value of miRNA-100 in various cancers. Oncotarget.
8:62703–62715. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Feng X, Wang Z, Fillmore R and Xi Y:
miR-200, a new star miRNA in human cancer. Cancer Lett.
344:166–173. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McGuire A, Brown JA and Kerin MJ:
Metastatic breast cancer: The potential of miRNA for diagnosis and
treatment monitoring. Cancer Metastasis Rev. 34:145–155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huang J, Lyu H, Wang J and Liu B: MicroRNA
regulation and therapeutic targeting of survivin in cancer. Am J
Cancer Res. 5:20–31. 2014.PubMed/NCBI
|
|
31
|
Bobbili MR, Mader RM, Grillari J and
Dellago H: OncomiR-17-5p: Alarm signal in cancer? Oncotarget.
8:71206–71222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yates LA, Norbury CJ and Gilbert RJ: The
long and short of microRNA. Cell. 153:516–519. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mendell JT and Olson EN: MicroRNAs in
stress signaling and human disease. Cell. 148:1172–1187. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xiao C, Wang L, Zhu L, Zhang C and Zhou J:
Curcumin inhibits oral squamous cell carcinoma SCC-9 cells
proliferation by regulating miR-9 expression. Biochem Biophys Res
Commun. 454:576–580. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rupaimoole R, Calin GA, Lopez-Berestein G
and Sood AK: miRNA deregulation in cancer cells and the tumor
microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Desgagné V, Guérin R, Guay SP, Corbin F,
Couture P, Lamarche B and Bouchard L: Changes in high-density
lipoprotein-carried miRNA contribution to the plasmatic pool after
consumption of dietary trans fat in healthy men. Epigenomics.
9:669–688. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Munoz JL, Bliss SA, Greco SJ, Ramkissoon
SH, Ligon KL and Rameshwar P: Delivery of functional anti-miR-9 by
mesenchymal stem cell-derived exosomes to glioblastoma multiforme
cells conferred chemosensitivity. Mol Ther Nucleic Acids.
2:e1262013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mirzaei H, Masoudifar A, Sahebkar A, Zare
N, Sadri Nahand J, Rashidi B, Mehrabian E, Mohammadi M, Mirzaei HR
and Jaafari MR: MicroRNA: A novel target of curcumin in cancer
therapy. J Cell Physiol. 233:3004–3015. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Roointan A, Ahmad Mir T, Ibrahim Wani S,
Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A,
Gandomani G, Gandomani M, et al: Early detection of lung cancer
biomarkers through biosensor technology: A review. J Pharm Biomed
Anal. 164:93–103. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin M, Tang S, Zhang C, Chen H, Huang W,
Liu Y and Zhang J: Euphorbia factor L2 induces apoptosis in A549
cells through the mitochondrial pathway. Acta Pharm Sin B. 7:59–64.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Inamura K: Diagnostic and therapeutic
potential of microRNAs in lung cancer. Cancers (Basel). 9:E492017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mehta A, Dobersch S, Romero-Olmedo AJ and
Barreto G: Epigenetics in lung cancer diagnosis and therapy. Cancer
Metastasis Rev. 34:229–241. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
MacDonagh L, Gray SG, Finn SP, Cuffe S,
O'Byrne KJ and Barr MP: The emerging role of microRNAs in
resistance to lung cancer treatments. Cancer Treat Rev. 41:160–169.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jin H, Qiao F, Wang Y, Xu Y and Shang Y:
Curcumin inhibits cell proliferation and induces apoptosis of human
non-small cell lung cancer cells through the upregulation of
miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol
Rep. 34:2782–2789. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu WL, Chang JM, Chong IW, Hung YL, Chen
YH, Huang WT, Kuo HF, Hsieh CC and Liu PL: Curcumin inhibits
lin-28A through the activation of miRNA-98 in the lung cancer cell
line A549. Molecules. 22:E9292017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X
and Yin H: Curcumin promotes apoptosis in A549/DDP
multidrug-resistant human lung adenocarcinoma cells through an
miRNA signaling pathway. Biochem Biophys Res Commun. 399:1–6. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ye M and Zhang J and Zhang J, Miao Q, Yao
L and Zhang J: Curcumin promotes apoptosis by activating the
p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer.
Cancer Lett. 357:196–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhan JW, Jiao DM, Wang Y, Song J, Wu JH,
Wu LJ, Chen QY and Ma SL: Integrated microRNA and gene expression
profiling reveals the crucial miRNAs in curcumin anti-lung cancer
cell invasion. Thorac Cancer. 8:461–470. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu GQ, Chai KQ, Zhu XM, Jiang H, Wang X,
Xue Q, Zheng AH, Zhou HY, Chen Y, Chen XC, et al: Anti-cancer
effects of curcumin on lung cancer through the inhibition of EZH2
and NOTCH1. Oncotarget. 7:26535–26550. 2016.PubMed/NCBI
|
|
51
|
Zhang W, Bai W and Zhang W: miR-21
suppresses the anticancer activities of curcumin by targeting PTEN
gene in human non-small cell lung cancer A549 cells. Clin Transl
Oncol. 16:708–713. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren
N, Hu Y, Yi T, Zhao X, Zhou S and Wei Y: MicroRNAs in colorectal
cancer: Small molecules with big functions. Cancer Lett.
360:89–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Okugawa Y, Grady WM and Goel A: Epigenetic
alterations in colorectal cancer: Emerging biomarkers.
Gastroenterology. 149:1204–1225. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Toden S, Okugawa Y, Jascur T, Wodarz D,
Komarova NL, Buhrmann C, Shakibaei M, Boland CR and Goel A:
Curcumin mediates chemosensitization to 5-fluorouracil through
miRNA-induced suppression of epithelial-to-mesenchymal transition
in chemoresistant colorectal cancer. Carcinogenesis. 36:355–367.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goel A: Utilizing biomarkers in colorectal
cancer: An interview with Ajay Goel. Future Oncol. 13:2511–2514.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mudduluru G, George-William JN, Muppala S,
Asangani IA, Kumarswamy R, Nelson LD and Allgayer H: Curcumin
regulates miR-21 expression and inhibits invasion and metastasis in
colorectal cancer. Biosci Rep. 31:185–197. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Riaz Rajoka MS, Jin M, Haobin Z, Li Q,
Shao D, Huang Q and Shi J: Impact of dietary compounds on
cancer-related gut microbiota and microRNA. Appl Microbiol
Biotechnol. 102:4291–4303. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Toden S, Okugawa Y, Buhrmann C, Nattamai
D, Anguiano E, Baldwin N, Shakibaei M, Boland CR and Goel A: Novel
evidence for curcumin and boswellic acid-induced chemoprevention
through regulation of miR-34a and miR-27a in colorectal cancer.
Cancer Prev Res (Phila). 8:431–443. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li B, Shi C, Li B, Zhao JM and Wang L: The
effects of Curcumin on HCT-116 cells proliferation and apoptosis
via the miR-491/PEG10 pathway. J Cell Biochem. 4:3091–3098. 2018.
View Article : Google Scholar
|
|
60
|
Gandhy SU, Kim K, Larsen L, Rosengren RJ
and Safe S: Curcumin and synthetic analogs induce reactive oxygen
species and decreases specificity protein (Sp) transcription
factors by targeting microRNAs. BMC Cancer. 12:5642012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dou H, Shen R, Tao J, Huang L, Shi H, Chen
H, Wang Y and Wang T: Curcumin suppresses the colon cancer
proliferation by inhibiting Wnt/β-catenin pathways via miR-130a.
Front Pharmacol. 8:8772017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nascimento-Gonçalves E, Faustino-Rocha AI,
Seixas F, Ginja M, Colaço B, Ferreira R, Fardilha M and Oliveira
PA: Modelling human prostate cancer: Rat models. Life Sci.
203:210–224. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kanwal R, Plaga AR, Liu X, Shukla GC and
Gupta S: MicroRNAs in prostate cancer: Functional role as
biomarkers. Cancer Lett. 407:9–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takayama KI, Misawa A and Inoue S:
Significance of microRNAs in androgen signaling and prostate cancer
progression. Cancers (Basel). 9:e1022017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cao H, Yu H, Feng Y, Chen L and Liang F:
Curcumin inhibits prostate cancer by targeting PGK1 in the
FOXD3/miR-143 axis. Cancer Chemother Pharmacol. 79:985–994. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu J, Li M, Wang Y and Luo J: Curcumin
sensitizes prostate cancer cells to radiation partly via epigenetic
activation of miR-143 and miR-143 mediated autophagy inhibition. J
Drug Target. 25:645–652. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu T, Chi H, Chen J, Chen C, Huang Y, Xi
H, Xue J and Si Y: Curcumin suppresses proliferation and in vitro
invasion of human prostate cancer stem cells by ceRNA effect of
miR-145 and lncRNA-ROR. Gene. 631:29–38. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang H, Zheng J, Shen H, Huang Y, Liu T,
Xi H and Chen C: Curcumin suppresses in vitro proliferation and
invasion of human prostate cancer stem cells by modulating
DLK1-DIO3 imprinted gene cluster microRNAs. Genet Test Mol
Biomarkers. 22:43–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Goh JN, Loo SY, Datta A, Siveen KS, Yap
WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, et al: microRNAs in
breast cancer: Regulatory roles governing the hallmarks of cancer.
Biol Rev Camb Philos Soc. 91:409–428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Nassar FJ, Nasr R and Talhouk R: MicroRNAs
as biomarkers for early breast cancer diagnosis, prognosis and
therapy prediction. Pharmacol Ther. 172:34–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang X, Hang Y, Liu J, Hou Y, Wang N and
Wang M: Anticancer effect of curcumin inhibits cell growth through
miR-21/PTEN/Akt pathway in breast cancer cell. Oncol Lett.
13:4825–4831. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li X, Xie W, Xie C, Huang C, Zhu J, Liang
Z, Deng F, Zhu M, Zhu W, Wu R, et al: Curcumin modulates
miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7
breast cancer cell proliferation. Phytother Res. 28:1553–1560.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang J, Cao Y, Sun J and Zhang Y: Curcumin
reduces the expression of Bcl-2 by upregulating miR-15a and miR-16
in MCF-7 cells. Med Oncol. 27:1114–1118. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Norouzi S, Majeed M, Pirro M, Generali D
and Sahebkar A: Curcumin as an adjunct therapy and microRNA
modulator in breast cancer. Curr Pharm Des. 24:171–177. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Guo J, Li W, Shi H, Xie X, Li L, Tang H,
Wu M, Kong Y, Yang L, Gao J, et al: Synergistic effects of curcumin
with emodin against the proliferation and invasion of breast cancer
cells through upregulation of miR-34a. Mol Cell Biochem.
382:103–111. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kronski E, Fiori ME, Barbieri O, Astigiano
S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U,
et al: miR181b is induced by the chemopreventive polyphenol
curcumin and inhibits breast cancer metastasis via down-regulation
of the inflammatory cytokines CXCL1 and −2. Mol Oncol. 8:581–595.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Spence T, Bruce J, Yip KW and Liu FF:
MicroRNAs in nasopharyngeal carcinoma. Chin Clin Oncol. 5:172016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee KT, Tan JK, Lam AK and Gan SY:
MicroRNAs serving as potential biomarkers and therapeutic targets
in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol
Hematol. 103:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gao W, Chan JY and Wong TS: Curcumin
exerts inhibitory effects on undifferentiated nasopharyngeal
carcinoma by inhibiting the expression of miR-125a-5p. Clin Sci
(Lond). 127:571–579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Feng S, Wang Y, Zhang R, Yang G, Liang Z,
Wang Z and Zhang G: Curcumin exerts its antitumor activity through
regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells.
OncoTargets Ther. 10:2377–2388. 2017. View Article : Google Scholar
|
|
81
|
Fan H, Shao M, Huang S, Liu Y, Liu J, Wang
Z, Diao J, Liu Y, Tong LI and Fan Q: miR-593 mediates
curcumin-induced radiosensitization of nasopharyngeal carcinoma
cells via MDR1. Oncol Lett. 11:3729–3734. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Diab M, Muqbil I, Mohammad RM, Azmi AS and
Philip PA: The role of microRNAs in the diagnosis and treatment of
pancreatic adenocarcinoma. J Clin Med. 5:E592016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rachagani S, Macha MA, Heimann N,
Seshacharyulu P, Haridas D, Chugh S and Batra SK: Clinical
implications of miRNAs in the pathogenesis, diagnosis and therapy
of pancreatic cancer. Adv Drug Deliv Rev. 81:16–33. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chitkara D, Mittal A and Mahato RI: miRNAs
in pancreatic cancer: Therapeutic potential, delivery challenges
and strategies. Adv Drug Deliv Rev. 81:34–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yang D, Li Y and Zhao D: Curcumin induces
apoptotic cell death in human pancreatic cancer cells via the
miR-340/XIAP signaling pathway. Oncol Lett. 14:1811–1816. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi
Y, Wu X, Cheng L, Ma C, Xia J and Wang Z: Curcumin inhibits cell
growth and invasion through up-regulation of miR-7 in pancreatic
cancer cells. Toxicol Lett. 231:82–91. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sun M, Estrov Z, Ji Y, Coombes KR, Harris
DH and Kurzrock R: Curcumin (diferuloylmethane) alters the
expression profiles of microRNAs in human pancreatic cancer cells.
Mol Cancer Ther. 7:464–473. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen S, Wang Y, Zhou W, Li S, Peng J, Shi
Z, Hu J, Liu YC, Ding H, Lin Y, et al: Identifying novel selective
non-nucleoside DNA methyltransferase 1 inhibitors through
docking-based virtual screening. J Med Chem. 57:9028–9041. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bertacchini J, Heidari N, Mediani L,
Capitani S, Shahjahani M, Ahmadzadeh A and Saki N: Targeting
PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci.
72:2337–2347. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Taverna S, Fontana S, Monteleone F, Pucci
M, Saieva L, De Caro V, Cardinale VG, Giallombardo M, Vicario E,
Rolfo C, et al: Curcumin modulates chronic myelogenous leukemia
exosomes composition and affects angiogenic phenotype via exosomal
miR-21. Oncotarget. 7:30420–30439. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Taverna S, Giallombardo M, Pucci M, Flugy
A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R:
Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia
cells growth: A possible role for exosomal disposal of miR-21.
Oncotarget. 6:21918–21933. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP,
Wang LY, Wu JB, Xing CY and Yu K: Pure curcumin decreases the
expression of WT1 by upregulation of miR-15a and miR-16-1 in
leukemic cells. J Exp Clin Cancer Res. 31:272012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nakamura K, Sawada K, Yoshimura A, Kinose
Y, Nakatsuka E and Kimura T: Clinical relevance of circulating
cell-free microRNAs in ovarian cancer. Mol Cancer. 15:482016.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li SD, Zhang JR, Wang YQ and Wan XP: The
role of microRNAs in ovarian cancer initiation and progression. J
Cell Mol Med. 14:2240–2249. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang J, Liu J, Xu X and Li L: Curcumin
suppresses cisplatin resistance development partly via modulating
extracellular vesicle-mediated transfer of MEG3 and miR-214 in
ovarian cancer. Cancer Chemother Pharmacol. 79:479–487. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang
T, Zhao S and Hou Y: Dihydroartemisinin and curcumin
synergistically induce apoptosis in SKOV3 cells via upregulation of
miR-124 targeting midkine. Cell Physiol Biochem. 43:589–601. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ
and Kan QC: Induction of microRNA-9 mediates cytotoxicity of
curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer
Prev. 15:3363–3368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tahmasebi Mirgani M, Isacchi B,
Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F and Babaei E:
Dendrosomal curcumin nanoformulation downregulates pluripotency
genes via miR-145 activation in U87MG glioblastoma cells. Int J
Nanomedicine. 9:403–417. 2014.PubMed/NCBI
|
|
100
|
Allegri L, Rosignolo F, Mio C, Filetti S,
Baldan F and Damante G: Effects of nutraceuticals on anaplastic
thyroid cancer cells. J Cancer Res Clin Oncol. 144:285–294. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Saini S, Arora S, Majid S, Shahryari V,
Chen Y, Deng G, Yamamura S, Ueno K and Dahiya R: Curcumin modulates
miRNA-203-mediated regulation of the Src-Akt axis in bladder
cancer. Cancer Prev Res (Phila). 4:1698–1709. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zaman MS, Chauhan N, Yallapu MM, Gara RK,
Maher DM, Kumari S, Sikander M, Khan S, Zafar N, Jaggi M and
Chauhan SC: Curcumin nanoformulation for cervical cancer treatment.
Sci Rep. 6:200512016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen P, Wang H, Yang F, Chen H, He W and
Wang J: Curcumin promotes osteosarcoma cell death by activating
miR-125a/ERRα signal pathway. J Cell Biochem. 118:74–81. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mou S, Zhou Z, He Y, Liu F and Gong L:
Curcumin inhibits cell proliferation and promotes apoptosis of
laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by
upregulating miR-15a. Oncol Lett. 14:4937–4942. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang L, Peng D, Sood AK, Dang CV and
Zhong X: Shedding light on the dark cancer genomes: Long noncoding
RNAs as novel biomarkers and potential therapeutic targets for
cancer. Mol Cancer Ther. 17:1816–1823. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Campos-Parra AD, Lopez-Urrutia E, Orozco
Moreno LT, Lopez-Camarillo C, Meza-Menchaca T, Figueroa Gonzalez G,
Bustamante Montes LP and Perez-Plasencia C: Long non-coding RNAs as
new master regulators of resistance to systemic treatments in
breast cancer. Int J Mol Sci. 19:E27112018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Alvarez-Dominguez JR and Lodish HF:
Emerging mechanisms of long noncoding RNA function during normal
and malignant hematopoiesis. Blood. 130:1965–1975. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Huang Y: The novel regulatory role of
lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med.
22:5768–5775. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Corrà F, Agnoletto C, Minotti L,
Baldassari F and Volinia S: The network of non-coding RNAs in
cancer drug resistance. Front Oncol. 8:3272018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Peng Z, Zhang C and Duan C: Functions and
mechanisms of long noncoding RNAs in lung cancer. Onco Targets
Ther. 9:4411–4424. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wei MM and Zhou GB: Long non-coding RNAs
and their roles in non-small-cell lung cancer. Genomics Proteomics
Bioinformatics. 14:280–288. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wang WH, Chen J, Zhang BR, Lu SJ, Wang F,
Peng L, Dai JH and Sun YZ: Curcumin inhibits proliferation and
enhances apoptosis in A549 cells by downregulating lncRNA UCA1.
Pharmazie. 73:402–407. 2018.PubMed/NCBI
|
|
113
|
Luo J, Qu J, Wu DK, Lu ZL, Sun YS and Qu
Q: Long non coding RNAs: A rising biotarget in colorectal cancer.
Oncotarget. 8:22187–22202. 2017.PubMed/NCBI
|
|
114
|
Li H, Ma SQ, Huang J, Chen XP and Zhou HH:
Roles of long noncoding RNAs in colorectal cancer metastasis.
Oncotarget. 8:39859–39876. 2017.PubMed/NCBI
|
|
115
|
Chen T, Yang P, Wang H and He ZY: Silence
of long noncoding RNA PANDAR switches low-dose curcumin-induced
senescence to apoptosis in colorectal cancer cells. Onco Targets
Ther. 10:483–491. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Misawa A, Takayama KI and Inoue S: Long
non-coding RNAs and prostate cancer. Cancer Sci. 108:2107–2114.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mitobe Y, Takayama KI, Horie-Inoue K and
Inoue S: Prostate cancer-associated lncRNAs. Cancer Lett.
418:159–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou
J and Wang L: Dysregulation of long non-coding RNA in breast
cancer: An overview of mechanism and clinical implication.
Oncotarget. 8:5508–5522. 2017.PubMed/NCBI
|
|
119
|
Esmatabadi MJD, Motamedrad M and
Sadeghizadeh M: Down-regulation of lncRNA, GAS5 decreases
chemotherapeutic effect of dendrosomal curcumin (DNC) in breast
cancer cells. Phytomedicine. 42:56–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Duguang L, Jin H, Xiaowei Q, Peng X,
Xiaodong W, Zhennan L, Jianjun Q and Jie Y: The involvement of
lncRNAs in the development and progression of pancreatic cancer.
Cancer Biol Ther. 18:927–936. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Huang X, Zhi X, Gao Y, Ta N, Jiang H and
Zheng J: lncRNAs in pancreatic cancer. Oncotarget. 7:57379–57390.
2016.PubMed/NCBI
|
|
122
|
Yoshida K, Toden S, Ravindranathan P, Han
H and Goel A: Curcumin sensitizes pancreatic cancer cells to
gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1
expression. Carcinogenesis. 38:1036–1046. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Nikpayam E, Tasharrofi B, Sarrafzadeh S
and Ghafouri-Fard S: The role of long non-coding RNAs in ovarian
cancer. Iran Biomed J. 21:3–15. 2017. View Article : Google Scholar : PubMed/NCBI
|