Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2019 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2019 Volume 42 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review)

  • Authors:
    • Yun Liu
    • Hongmei Sun
    • Bolat Makabel
    • Qingbin Cui
    • Jiajun Li
    • Chaoyue Su
    • Charles R. Ashby Jr
    • Zhesheng Chen
    • Jianye Zhang
  • View Affiliations / Copyright

    Affiliations: Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China, Infinitus (China) Company Ltd., Jiangmen, Guangdong 529156, P.R. China, Xinjiang Institute of Materia Medica, Urumqi, Xinjiang 830004, P.R. China, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 20-34
    |
    Published online on: May 3, 2019
       https://doi.org/10.3892/or.2019.7148
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Curcumin [(1E,6E)‑1,7‑bis(4‑hydroxy‑3‑­methoxyphenyl) hepta‑1,6‑diene‑3,5‑dione] is a natural polyphenol that is derived from the turmeric plant (curcuma longa L.). Curcumin is widely used in food coloring, preservatives, and condiments. Curcumin possesses anti‑tumor, anti‑oxidative and anti‑inflammatory efficacy, as well as other pharmacological effects. Emerging evidence indicates that curcumin alters microRNAs (miRNAs) and long non‑coding RNAs (lncRNAs) in various types of cancers. Both miRNAs and lncRNAs are non‑coding RNAs that can epigenetically modulate the expression of multiple genes via post‑transcriptional regulation. In the present review, the interactions between curcumin and non‑coding RNAs are summarized in numerous types of cancers, including lung, colorectal, prostate, breast, nasopharyngeal, pancreatic, blood, and ovarian cancer, and the vital non‑coding RNAs and their downstream targets are described.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Shi Z, Li Z, Li ZJ, Cheng K, Du Y, Fu H and Khuri FR: Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3. Oncogene. 34:2538–2545. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Jiang QW, Cheng KJ, Mei XL, Qiu JG, Zhang WJ, Xue YQ, Qin WM, Yang Y, Zheng DW, Chen Y, et al: Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine. Oncotarget. 6:32790–32804. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Zhang JY, Wu HY, Xia XK, Liang YJ, Yan YY, She ZG, Lin YC and Fu LW: Anthracenedione derivative 1403P-3 induces apoptosis in KB and KBv200 cells via reactive oxygen species-independent mitochondrial pathway and death receptor pathway. Cancer Biol Ther. 6:1413–1421. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Zhang JY, Tao LY, Liang YJ, Yan YY, Dai CL, Xia XK, She ZG, Lin YC and Fu LW: Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G(1) with involvement of GSK-3beta/beta-catenin/c-Myc pathway. Cell Cycle. 8:2444–2450. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Zhang JY, Huang WJ, Sun HM, Liu Y, Zhao XQ, Tang SL, Sun MN, Wang S, Li JJ, Zhang LL, et al: Structure identification and in vitro anticancer activity of lathyrol-3-phenylacetate-5,15-diacetate. Molecules. 22:e14122017. View Article : Google Scholar : PubMed/NCBI

6 

Zhang J, Lai Z, Huang W, Ling H, Lin M, Tang S, Liu Y and Tao Y: Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anticancer Agents Med Chem. 17:1374–1382. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, et al: Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 67:11012–11020. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Zhang JY, Mi YJ, Chen SP, Wang F, Liang YJ, Zheng LS, Shi CJ, Tao LY, Chen LM, Chen HB and Fu LW: Euphorbia factor L1 reverses ABCB1-mediated multidrug resistance involving interaction with ABCB1 independent of ABCB1 downregualtion. J Cell Biochem. 112:1076–1083. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Lin M, Bi H, Yan Y, Huang W, Zhang G, Zhang G, Tang S, Liu Y, Zhang L, Ma J and Zhang J: Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget. 8:23436–23447. 2017.PubMed/NCBI

10 

McLoughlin NM, Mueller C and Grossmann TN: The therapeutic potential of PTEN modulation: Targeting strategies from gene to protein. Cell Chem Biol. 25:19–29. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Zhang JY, Lin MT, Tung HY, Tang SL, Yi T, Zhang YZ, Tang YN, Zhao ZZ and Chen HB: Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway. Am J Cancer Res. 6:819–826. 2016.PubMed/NCBI

12 

Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS, Wang F, She ZG, Lin YC, To KK and Fu LW: Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs. 8:1469–1481. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y, Reynolds S, Cheng H, Rupaimoole R, et al: Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer cell. 23:186–199. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Tao YW, Lin YC, She ZG, Lin MT, Chen PX and Zhang JY: Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer Agents Med Chem. 15:258–266. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN, Tang SL, Yang ZJ, Zhao ZZ and Chen HB: Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules. 20:11524–11534. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Su J, Zhou X, Wang L, Yin X and Wang Z: Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells. Am J Cancer Res. 6:1949–1962. 2016.PubMed/NCBI

17 

Sharma V and Pathak K: Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology. Acta Pharm Sin B. 6:600–613. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Fan Y, Liu Y, Zhang L, Cai F, Zhu L and Xu J: C0818, a novel curcumin derivative, interacts with Hsp90 and inhibits Hsp90 ATPase activity. Acta Pharm Sin B. 7:91–96. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Bian EB, Xiong ZG and Li J: New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol. 234:2194–2203. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Castro-Oropeza R, Melendez-Zajgla J, Maldonado V and Vazquez-Santillan K: The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol (Dordr). 41:585–603. 2018. View Article : Google Scholar : PubMed/NCBI

21 

An X, Sarmiento C, Tan T and Zhu H: Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B. 7:38–51. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Ferrajoli A, Ivan C, Ciccone M, Shimizu M, Kita Y, Ohtsuka M, D'Abundo L, Qiang J, Lerner S, Nouraee N, et al: Epstein-Barr virus microRNAs are expressed in patients with chronic lymphocytic leukemia and correlate with overall survival. EBioMedicine. 2:572–582. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a BCSC-associated microrna signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Stark MS, Klein K, Weide B, Haydu LE, Pflugfelder A, Tang YH, Palmer JM, Whiteman DC, Scolyer RA, Mann GJ, et al: The prognostic and predictive value of melanoma-related microRNAs using tissue and serum: A microRNA expression analysis. EBioMedicine. 2:671–680. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Montani F and Bianchi F: Circulating cancer biomarkers: The macro-revolution of the micro-RNA. EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA: microRNA therapeutics in cancer-an emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Dou Z, Lin S, Dai C, Lu Y, Tian T, Wang M, Liu X, Zheng Y, Xu P, Li S, et al: Pooling-analysis for diagnostic and prognostic value of miRNA-100 in various cancers. Oncotarget. 8:62703–62715. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Feng X, Wang Z, Fillmore R and Xi Y: miR-200, a new star miRNA in human cancer. Cancer Lett. 344:166–173. 2014. View Article : Google Scholar : PubMed/NCBI

29 

McGuire A, Brown JA and Kerin MJ: Metastatic breast cancer: The potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 34:145–155. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Huang J, Lyu H, Wang J and Liu B: MicroRNA regulation and therapeutic targeting of survivin in cancer. Am J Cancer Res. 5:20–31. 2014.PubMed/NCBI

31 

Bobbili MR, Mader RM, Grillari J and Dellago H: OncomiR-17-5p: Alarm signal in cancer? Oncotarget. 8:71206–71222. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Yates LA, Norbury CJ and Gilbert RJ: The long and short of microRNA. Cell. 153:516–519. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Mendell JT and Olson EN: MicroRNAs in stress signaling and human disease. Cell. 148:1172–1187. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Xiao C, Wang L, Zhu L, Zhang C and Zhou J: Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression. Biochem Biophys Res Commun. 454:576–580. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Rupaimoole R, Calin GA, Lopez-Berestein G and Sood AK: miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Desgagné V, Guérin R, Guay SP, Corbin F, Couture P, Lamarche B and Bouchard L: Changes in high-density lipoprotein-carried miRNA contribution to the plasmatic pool after consumption of dietary trans fat in healthy men. Epigenomics. 9:669–688. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL and Rameshwar P: Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2:e1262013. View Article : Google Scholar : PubMed/NCBI

38 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Mirzaei H, Masoudifar A, Sahebkar A, Zare N, Sadri Nahand J, Rashidi B, Mehrabian E, Mohammadi M, Mirzaei HR and Jaafari MR: MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol. 233:3004–3015. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, et al: Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal. 164:93–103. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Lin M, Tang S, Zhang C, Chen H, Huang W, Liu Y and Zhang J: Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway. Acta Pharm Sin B. 7:59–64. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Inamura K: Diagnostic and therapeutic potential of microRNAs in lung cancer. Cancers (Basel). 9:E492017. View Article : Google Scholar : PubMed/NCBI

43 

Mehta A, Dobersch S, Romero-Olmedo AJ and Barreto G: Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 34:229–241. 2015. View Article : Google Scholar : PubMed/NCBI

44 

MacDonagh L, Gray SG, Finn SP, Cuffe S, O'Byrne KJ and Barr MP: The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev. 41:160–169. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Jin H, Qiao F, Wang Y, Xu Y and Shang Y: Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 34:2782–2789. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Liu WL, Chang JM, Chong IW, Hung YL, Chen YH, Huang WT, Kuo HF, Hsieh CC and Liu PL: Curcumin inhibits lin-28A through the activation of miRNA-98 in the lung cancer cell line A549. Molecules. 22:E9292017. View Article : Google Scholar : PubMed/NCBI

47 

Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X and Yin H: Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 399:1–6. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Ye M and Zhang J and Zhang J, Miao Q, Yao L and Zhang J: Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett. 357:196–205. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Zhan JW, Jiao DM, Wang Y, Song J, Wu JH, Wu LJ, Chen QY and Ma SL: Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac Cancer. 8:461–470. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Wu GQ, Chai KQ, Zhu XM, Jiang H, Wang X, Xue Q, Zheng AH, Zhou HY, Chen Y, Chen XC, et al: Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget. 7:26535–26550. 2016.PubMed/NCBI

51 

Zhang W, Bai W and Zhang W: miR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol. 16:708–713. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, Hu Y, Yi T, Zhao X, Zhou S and Wei Y: MicroRNAs in colorectal cancer: Small molecules with big functions. Cancer Lett. 360:89–105. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Okugawa Y, Grady WM and Goel A: Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology. 149:1204–1225. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, Shakibaei M, Boland CR and Goel A: Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis. 36:355–367. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Goel A: Utilizing biomarkers in colorectal cancer: An interview with Ajay Goel. Future Oncol. 13:2511–2514. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD and Allgayer H: Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 31:185–197. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Huang Q and Shi J: Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol. 102:4291–4303. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Toden S, Okugawa Y, Buhrmann C, Nattamai D, Anguiano E, Baldwin N, Shakibaei M, Boland CR and Goel A: Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res (Phila). 8:431–443. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Li B, Shi C, Li B, Zhao JM and Wang L: The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 4:3091–3098. 2018. View Article : Google Scholar

60 

Gandhy SU, Kim K, Larsen L, Rosengren RJ and Safe S: Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer. 12:5642012. View Article : Google Scholar : PubMed/NCBI

61 

Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, Wang Y and Wang T: Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/β-catenin pathways via miR-130a. Front Pharmacol. 8:8772017. View Article : Google Scholar : PubMed/NCBI

62 

Nascimento-Gonçalves E, Faustino-Rocha AI, Seixas F, Ginja M, Colaço B, Ferreira R, Fardilha M and Oliveira PA: Modelling human prostate cancer: Rat models. Life Sci. 203:210–224. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Kanwal R, Plaga AR, Liu X, Shukla GC and Gupta S: MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett. 407:9–20. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Takayama KI, Misawa A and Inoue S: Significance of microRNAs in androgen signaling and prostate cancer progression. Cancers (Basel). 9:e1022017. View Article : Google Scholar : PubMed/NCBI

65 

Cao H, Yu H, Feng Y, Chen L and Liang F: Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis. Cancer Chemother Pharmacol. 79:985–994. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Liu J, Li M, Wang Y and Luo J: Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target. 25:645–652. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Liu T, Chi H, Chen J, Chen C, Huang Y, Xi H, Xue J and Si Y: Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene. 631:29–38. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Zhang H, Zheng J, Shen H, Huang Y, Liu T, Xi H and Chen C: Curcumin suppresses in vitro proliferation and invasion of human prostate cancer stem cells by modulating DLK1-DIO3 imprinted gene cluster microRNAs. Genet Test Mol Biomarkers. 22:43–50. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, et al: microRNAs in breast cancer: Regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc. 91:409–428. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Nassar FJ, Nasr R and Talhouk R: MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 172:34–49. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wang X, Hang Y, Liu J, Hou Y, Wang N and Wang M: Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol Lett. 13:4825–4831. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R, et al: Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res. 28:1553–1560. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Yang J, Cao Y, Sun J and Zhang Y: Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. 27:1114–1118. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Norouzi S, Majeed M, Pirro M, Generali D and Sahebkar A: Curcumin as an adjunct therapy and microRNA modulator in breast cancer. Curr Pharm Des. 24:171–177. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Guo J, Li W, Shi H, Xie X, Li L, Tang H, Wu M, Kong Y, Yang L, Gao J, et al: Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol Cell Biochem. 382:103–111. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U, et al: miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and −2. Mol Oncol. 8:581–595. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Spence T, Bruce J, Yip KW and Liu FF: MicroRNAs in nasopharyngeal carcinoma. Chin Clin Oncol. 5:172016. View Article : Google Scholar : PubMed/NCBI

78 

Lee KT, Tan JK, Lam AK and Gan SY: MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol Hematol. 103:1–9. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Gao W, Chan JY and Wong TS: Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of miR-125a-5p. Clin Sci (Lond). 127:571–579. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Feng S, Wang Y, Zhang R, Yang G, Liang Z, Wang Z and Zhang G: Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. OncoTargets Ther. 10:2377–2388. 2017. View Article : Google Scholar

81 

Fan H, Shao M, Huang S, Liu Y, Liu J, Wang Z, Diao J, Liu Y, Tong LI and Fan Q: miR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol Lett. 11:3729–3734. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Diab M, Muqbil I, Mohammad RM, Azmi AS and Philip PA: The role of microRNAs in the diagnosis and treatment of pancreatic adenocarcinoma. J Clin Med. 5:E592016. View Article : Google Scholar : PubMed/NCBI

83 

Rachagani S, Macha MA, Heimann N, Seshacharyulu P, Haridas D, Chugh S and Batra SK: Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Adv Drug Deliv Rev. 81:16–33. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Chitkara D, Mittal A and Mahato RI: miRNAs in pancreatic cancer: Therapeutic potential, delivery challenges and strategies. Adv Drug Deliv Rev. 81:34–52. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Yang D, Li Y and Zhao D: Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway. Oncol Lett. 14:1811–1816. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Ma J, Fang B, Zeng F, Pang H, Zhang J, Shi Y, Wu X, Cheng L, Ma C, Xia J and Wang Z: Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett. 231:82–91. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH and Kurzrock R: Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 7:464–473. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Chen S, Wang Y, Zhou W, Li S, Peng J, Shi Z, Hu J, Liu YC, Ding H, Lin Y, et al: Identifying novel selective non-nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J Med Chem. 57:9028–9041. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A and Saki N: Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 72:2337–2347. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, Cardinale VG, Giallombardo M, Vicario E, Rolfo C, et al: Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 7:30420–30439. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R: Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget. 6:21918–21933. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Gao SM, Yang JJ, Chen CQ, Chen JJ, Ye LP, Wang LY, Wu JB, Xing CY and Yu K: Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res. 31:272012. View Article : Google Scholar : PubMed/NCBI

94 

Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E and Kimura T: Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 15:482016. View Article : Google Scholar : PubMed/NCBI

95 

Li SD, Zhang JR, Wang YQ and Wan XP: The role of microRNAs in ovarian cancer initiation and progression. J Cell Mol Med. 14:2240–2249. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Zhang J, Liu J, Xu X and Li L: Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol. 79:479–487. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang T, Zhao S and Hou Y: Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells via upregulation of miR-124 targeting midkine. Cell Physiol Biochem. 43:589–601. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ and Kan QC: Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev. 15:3363–3368. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F and Babaei E: Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine. 9:403–417. 2014.PubMed/NCBI

100 

Allegri L, Rosignolo F, Mio C, Filetti S, Baldan F and Damante G: Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol. 144:285–294. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng G, Yamamura S, Ueno K and Dahiya R: Curcumin modulates miRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila). 4:1698–1709. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S, Sikander M, Khan S, Zafar N, Jaggi M and Chauhan SC: Curcumin nanoformulation for cervical cancer treatment. Sci Rep. 6:200512016. View Article : Google Scholar : PubMed/NCBI

103 

Chen P, Wang H, Yang F, Chen H, He W and Wang J: Curcumin promotes osteosarcoma cell death by activating miR-125a/ERRα signal pathway. J Cell Biochem. 118:74–81. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Mou S, Zhou Z, He Y, Liu F and Gong L: Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a. Oncol Lett. 14:4937–4942. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Zhang L, Peng D, Sood AK, Dang CV and Zhong X: Shedding light on the dark cancer genomes: Long noncoding RNAs as novel biomarkers and potential therapeutic targets for cancer. Mol Cancer Ther. 17:1816–1823. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Campos-Parra AD, Lopez-Urrutia E, Orozco Moreno LT, Lopez-Camarillo C, Meza-Menchaca T, Figueroa Gonzalez G, Bustamante Montes LP and Perez-Plasencia C: Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci. 19:E27112018. View Article : Google Scholar : PubMed/NCBI

107 

Alvarez-Dominguez JR and Lodish HF: Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood. 130:1965–1975. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Huang Y: The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med. 22:5768–5775. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Corrà F, Agnoletto C, Minotti L, Baldassari F and Volinia S: The network of non-coding RNAs in cancer drug resistance. Front Oncol. 8:3272018. View Article : Google Scholar : PubMed/NCBI

110 

Peng Z, Zhang C and Duan C: Functions and mechanisms of long noncoding RNAs in lung cancer. Onco Targets Ther. 9:4411–4424. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Wei MM and Zhou GB: Long non-coding RNAs and their roles in non-small-cell lung cancer. Genomics Proteomics Bioinformatics. 14:280–288. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Wang WH, Chen J, Zhang BR, Lu SJ, Wang F, Peng L, Dai JH and Sun YZ: Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Pharmazie. 73:402–407. 2018.PubMed/NCBI

113 

Luo J, Qu J, Wu DK, Lu ZL, Sun YS and Qu Q: Long non coding RNAs: A rising biotarget in colorectal cancer. Oncotarget. 8:22187–22202. 2017.PubMed/NCBI

114 

Li H, Ma SQ, Huang J, Chen XP and Zhou HH: Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget. 8:39859–39876. 2017.PubMed/NCBI

115 

Chen T, Yang P, Wang H and He ZY: Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells. Onco Targets Ther. 10:483–491. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Misawa A, Takayama KI and Inoue S: Long non-coding RNAs and prostate cancer. Cancer Sci. 108:2107–2114. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Mitobe Y, Takayama KI, Horie-Inoue K and Inoue S: Prostate cancer-associated lncRNAs. Cancer Lett. 418:159–166. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J and Wang L: Dysregulation of long non-coding RNA in breast cancer: An overview of mechanism and clinical implication. Oncotarget. 8:5508–5522. 2017.PubMed/NCBI

119 

Esmatabadi MJD, Motamedrad M and Sadeghizadeh M: Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine. 42:56–65. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Duguang L, Jin H, Xiaowei Q, Peng X, Xiaodong W, Zhennan L, Jianjun Q and Jie Y: The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biol Ther. 18:927–936. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Huang X, Zhi X, Gao Y, Ta N, Jiang H and Zheng J: lncRNAs in pancreatic cancer. Oncotarget. 7:57379–57390. 2016.PubMed/NCBI

122 

Yoshida K, Toden S, Ravindranathan P, Han H and Goel A: Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis. 38:1036–1046. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Nikpayam E, Tasharrofi B, Sarrafzadeh S and Ghafouri-Fard S: The role of long non-coding RNAs in ovarian cancer. Iran Biomed J. 21:3–15. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C, Ashby Jr C, Chen Z and Zhang J: The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncol Rep 42: 20-34, 2019.
APA
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C. ... Zhang, J. (2019). The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncology Reports, 42, 20-34. https://doi.org/10.3892/or.2019.7148
MLA
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C., Ashby Jr, C., Chen, Z., Zhang, J."The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review)". Oncology Reports 42.1 (2019): 20-34.
Chicago
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C., Ashby Jr, C., Chen, Z., Zhang, J."The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review)". Oncology Reports 42, no. 1 (2019): 20-34. https://doi.org/10.3892/or.2019.7148
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C, Ashby Jr C, Chen Z and Zhang J: The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncol Rep 42: 20-34, 2019.
APA
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C. ... Zhang, J. (2019). The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncology Reports, 42, 20-34. https://doi.org/10.3892/or.2019.7148
MLA
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C., Ashby Jr, C., Chen, Z., Zhang, J."The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review)". Oncology Reports 42.1 (2019): 20-34.
Chicago
Liu, Y., Sun, H., Makabel, B., Cui, Q., Li, J., Su, C., Ashby Jr, C., Chen, Z., Zhang, J."The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review)". Oncology Reports 42, no. 1 (2019): 20-34. https://doi.org/10.3892/or.2019.7148
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team