Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2019 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2019 Volume 42 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance

  • Authors:
    • Haiying Li
    • Juan Li
    • Juan Cheng
    • Xuan Chen
    • Lanxia Zhou
    • Zhao Li
  • View Affiliations / Copyright

    Affiliations: Department of Central Laboratory, The First Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Department of Hematology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1035-1046
    |
    Published online on: July 16, 2019
       https://doi.org/10.3892/or.2019.7237
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bone marrow‑derived mesenchymal stem cells (MSCs), are the basic cellular components that make up the bone marrow microenvironment (BMM). In acute myeloid leukemia (AML), the morphology and function of MSCs changes in accordance with the transformation of the BMM. Moreover, the transformation of MSCs into osteoblasts is determined through the bone morphogenetic protein (BMP) pathway, ultimately leading to an altered expression of the downstream adhesion molecule, connective tissue growth factor (CTGF). In this study, we aimed to explore the interaction of possible pathways in AML‑derived mesenchymal stem cells (AML‑MSCs) co‑cultured with the K562 and K562‑ADM cell lines. AML‑MSCs were co‑cultured with K562/K562‑ADM cells, and the interactions between the cells were verified by morphological detection, peroxidase staining (POX), reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and fluorescence in situ hybridization (FISH). The proliferation of K562/K562‑ADM cells under co‑culture conditions was detected by flow cytometry. The expression levels of BMP4 and CTGF were examined by RT‑qPCR and western blot (WB) analysis. The detection of interleukin (IL)‑6 and IL‑32 was also determined by enzyme linked immunosorbent assay (ELISA). In the co‑culture system, the K562‑ADM cells underwent fusiform transformation. The occurrence of this transformation was associated with an increased expression of CTGF due to the dysregulation of the BMP pathway. The AML‑MSCs promoted the proliferation of the K562‑ADM cell, but inhibited that of the K562 cells. These findings were confirmed by changes in the expression of the soluble cytokines, IL‑6 and IL‑32. On the whole, the findings of this study demonstrate that AML‑MSCs regulate the expression of CTGF through the BMP pathway. In addition, they affect cytokine production, induce spindle‑shaped transformation, and increase drug resistance in the K562‑ADM cells. Thus, the morphological transformation through the BMP pathway provides us with a novel target with which to circumvent tumor occurrence, development, drug resistance, invasion and metastasis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 4:7–25. 1978.PubMed/NCBI

2 

Krause DS and Scadden DT: A hostel for the hostile: The bone marrow niche in hematologic neoplasms. Haematologica. 100:1376–1387. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Korn C and Méndez-Ferrer S: Myeloid malignancies and the microenvironment. Blood. 129:811–822. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Geyh S, Rodríguez-Paredes M, Jäger P, Khandanpour C, Cadeddu RP, Gutekunst J, Wilk CM, Fenk R, Zilkens C, Hermsen D, et al: Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia. 30:683–691. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Medyouf H: The microenvironment in human myeloid malignancies: Emerging concepts and therapeutic implications. Blood. 129:1617–1626. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Schepers K, Campbell TB and Passegué E: Normal and leukemic stem cell niches: Insights and therapeutic opportunities. Cell Stem Cell. 16:254–267. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Kumar A, Anand T, Bhattacharyya J, Sharma A and Jaganathan BG: K562 chronic myeloid leukemia cells modify osteogenic differentiation and gene expression of bone marrow stromal cells. J Cell Commun Signal. 12:441–450. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Battula VL, Le PM, Sun JC, Nguyen K, Yuan B, Zhou X, Sonnylal S, McQueen T, Ruvolo V, Michel KA, et al: AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. JCI Insight. 2:900362017. View Article : Google Scholar : PubMed/NCBI

9 

Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN and Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 466:829–834. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Frenette PS, Pinho S, Lucas D and Scheiermann C: Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol. 31:285–316. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M and Bianco P: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 131:324–336. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Song N, Gao L, Qiu H, Huang C, Cheng H, Zhou H, Lv S, Chen L and Wang J: Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant. Int J Mol Med. 36:139–149. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Zhao Z, Tang X, You Y, Li W, Liu F and Zou P: Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res. 30:993–1003. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, Appelbaum FR and Becker PS: Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 5:e3022015. View Article : Google Scholar : PubMed/NCBI

15 

Fracchiolla NS, Fattizzo B and Cortelezzi A: Mesenchymal stem cells in myeloid malignancies: A focus on immune escaping and therapeutic implications. Stem Cells Int 2017. 67205942017.

16 

Schroeder T, Geyh S, Germing U and Haas R: Mesenchymal stromal cells in myeloid malignancies. Blood Res. 51:225–232. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Geyh S, Oz S, Cadeddu RP, Fröbel J, Brückner B, Kündgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, Gattermann N, et al: Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 27:1841–1851. 2013. View Article : Google Scholar : PubMed/NCBI

18 

von der Heide EK, Neumann M, Vosberg S, James AR, Schroeder MP, Ortiz-Tanchez J, Isaakidis K, Schlee C, Luther M, Jöhrens K, et al: Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia. 31:1069–1078. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schümann E, Thiel E and Blau IW: Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 35:221–229. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Lopes MR, Pereira JK, de Melo Campos P, Machado-Neto JA, Traina F, Saad ST and Favaro P: De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes. Sci Rep. 7:407072017. View Article : Google Scholar : PubMed/NCBI

21 

Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, et al: Recombinant human bone morphogenetic protein induces bone formation. Proc Nati Acad Sci USA. 87:2220–2224. 1990. View Article : Google Scholar

22 

Scarfi S: Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells. 8:1–12. 2016. View Article : Google Scholar : PubMed/NCBI

23 

He Y, Yu L, Liu J, Li Y, Wu Y, Huang Z, Wu D, Wang H, Wu Z and Qiu G: Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. FASEB J. 33:6069–6081. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Zhang Y, Chen B, Li D, Zhou X and Chen Z: LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract. 215:525–531. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Vicente López MA, Vázquez García MN, Entrena A, Olmedillas Lopez S, García-Arranz M, García-Olmo D and Zapata A: Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells Dev. 20:1011–1019. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Toofan P and Wheadon H: Role of the bone morphogenic protein pathway in developmental haemopoiesis and leukaemogenesis. Biochem Soc Trans. 44:1455–1463. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Zylbersztejn F, Flores-Violante M, Voeltzel T, Nicolini FE, Lefort S and Maguer-Satta V: The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp Hematol. 61:36–44. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Zhao X, Liu J, Peng M, Liu J and Chen F: BMP4 is involved in the chemoresistance of myeloid leukemia cells through regulating autophagy-apoptosis balance. Cancer Invest. 31:555–562. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL and Fleming WH: BMP4 regulates the hematopoietic stem cell niche. Blood. 114:4393–4401. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Voeltzel T, Flores-Violante M, Zylbersztejn F, Lefort S, Billandon M, Jeanpierre S, Joly S, Fossard G, Milenkov M, Mazurier F, et al: A new signaling cascade linking BMP4, BMPR1A, DeltaNp73 and NANOG impacts on stem-like human cell properties and patient outcome. Cell Death Dis. 9:10112018. View Article : Google Scholar : PubMed/NCBI

31 

Bradham DM, Igarashi A, Potter RL and Grotendorst GR: Connective tissue growth factor: A cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF10. J Cell Biol. 114:1285–1294. 1991. View Article : Google Scholar : PubMed/NCBI

32 

Aguiar DP, de Farias GC, de Sousa EB, de Mattos Coelho- Aguiar J, Lobo JC, Casado PL, Duarte ME and Abreu JG Jr: New strategy to control cell migration and metastasis regulated by CCN2/CTGF. Cancer Cell Int. 14:612014. View Article : Google Scholar : PubMed/NCBI

33 

Jun JI and Lau LF: Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 10:945–963. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Chen CC and Lau LF: Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 41:771–783. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Istvánffy R, Vilne B, Schreck C, Ruf F, Pagel C, Grziwok S, Henkel L, Prazeres da Costa O, Berndt J, Stümpflen V, et al: Stroma-derived connective tissue growth factor maintains cell cycle progression and repopulation activity of hematopoietic stem cells in vitro. Stem Cell Rep. 5:702–715. 2015. View Article : Google Scholar

36 

Mundy C, Gannon M and Popoff SN: Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling. J Cell Physiol. 229:672–681. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Johansen S, Brenner AK, Bartaula-Brevik S, Reikvam H and Bruserud O: The possible importance of β3 integrins for leukemogenesis and chemoresistance in acute myeloid leukemia. Int J Mol Sci. 19:E2512018. View Article : Google Scholar : PubMed/NCBI

38 

Al-Asadi MG, Brindle G, Castellanos M, May ST, Mills KI, Russell NH, Seedhouse CH and Pallis M: A molecular signature of dormancy in CD34+CD38- acute myeloid leukaemia cells. Oncotarget. 8:111405–111418. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Wang J, Liu X, Qiu Y, Shi Y, Cai J, Wang B, Wei X, Ke Q, Sui X, Wang Y, et al: Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 11:112018. View Article : Google Scholar : PubMed/NCBI

40 

Meads MB, Gatenby RA and Dalton WS: Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat Rev Cancer. 9:665–674. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL and Lévesque JP: Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 18:1651–1657. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Jacamo R, Chen Y, Wang Z, Ma W, Zhang M, Spaeth EL, Wang Y, Battula VL, Mak PY, Schallmoser K, et al: Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood. 123:2691–2702. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

44 

World Medical Association: World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 310:2191–2194. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Nielsen EØ, Chen L, Hansen JO, Degn M, Overgaard S and Ding M: Optimizing Osteogenic differentiation of ovine adipose-derived stem cells by osteogenic induction medium and FGFb, BMP2, or NELL1 in vitro. Stem Cells Int 2018. 97813932018.

46 

Liu X and Harada S: RNA isolation from mammalian samples. Curr Protoc Mol Biol Chapter. 4:Unit 4.16. 2013. View Article : Google Scholar

47 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Zor T and Selinger Z: Linearization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal Biochem. 236:302–308. 1996. View Article : Google Scholar : PubMed/NCBI

49 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Gribble SM, Roberts I, Grace C, Andrews KM, Green AR and Nacheva EP: Cytogenetics of the chronic myeloid leukemia-derived cell line K562: Karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet. 118:1–8. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Kouvidi E, Stratigi A, Batsali A, Mavroudi I, Mastrodemou S, Ximeri M, Papadaki HA and Pontikoglou CG: Cytogenetic evaluation of mesenchymal stem/stromal cells from patients with myelodysplastic syndromes at different time-points during ex vivo expansion. Leuk Res. 43:24–32. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Blau O, Baldus CD, Hofmann WK, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, et al: Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 118:5583–5592. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Soenen-Cornu V, Tourino C, Bonnet ML, Guillier M, Flamant S, Kotb R, Bernheim A, Bourhis JH, Preudhomme C, Fenaux P and Turhan AG: Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene. 24:2441–2448. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A and Hongeng S: Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res. 30:1493–1498. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Flores-Figueroa E, Montesinos JJ, Flores-Guzmán P, Gutiérrez-Espíndola G, Arana-Trejo RM, Castillo-Medina S, Pérez-Cabrera A, Hernández-Estévez E, Arriaga L and Mayani H: Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res. 32:1407–1416. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Aanei CM, Flandrin P, Eloae FZ, Carasevici E, Guyotat D, Wattel E and Campos L: Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes. Stem Cells Dev. 21:1604–1615. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Chandran P, Le Y, Li Y, Sabloff M, Mehic J, Rosu-Myles M and Allan DS: Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leuk Res. 39:486–493. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Reikvam H, Brenner AK, Hagen KM, Liseth K, Skrede S, Hatfield KJ and Bruserud Ø: The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res. 15:530–541. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Mohammadi S, Nikbakht M, Sajjadi SM, Rad F, Chahardouli B, Sabour Takanlu J, Rostami Sh, Alimoghaddam K, Ghavamzadeh A and Ghaffari SH: Reciprocal interactions of leukemic cells with bone marrow stromal cells promote enrichment of leukemic stem cell compartments in response to curcumin and daunorubicin. Asian Pac J Cancer Prev. 18:831–840. 2017.PubMed/NCBI

60 

Becker PS: Dependence of acute myeloid leukemia on adhesion within the bone marrow microenvironment. ScientificWorldJournal 2012. 8564672012.

61 

Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV and Andreeff M: Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 16:1713–1724. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Nwajei F and Konopleva M: The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol 2013. 9539822013.

63 

Damiano JS, Hazlehurst LA and Dalton W: Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia. 15:1232–1239. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Aguiar DP, Coelho-Aguiar JM and Abreu JG: CCN2/CTGF silencing blocks cell aggregation in embryonal carcinoma P19 cell. Braz J Med Biol Res. 44:200–205. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Kumar A, Bhattacharyya J and Jaganathan BG: Adhesion to stromal cells mediates imatinib resistance in chronic myeloid leukemia through ERK and BMP signaling pathways. Sci Rep. 7:95352017. View Article : Google Scholar : PubMed/NCBI

66 

Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N, Shpall E, Huang X and Andreeff M: p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1α-mediated down-regulation of CXCL12. Blood. 118:4431–4439. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Naugler WE and Karin M: The wolf in sheep's clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 14:109–119. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Rose-John S: IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 8:1237–1247. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, et al: IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 121:3846–3859. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Onishi K and Zandstra PW: LIF signaling in stem cells and development. Development. 142:2230–2236. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Itoh F, Watabe T and Miyazono K: Roles of TGF-β family signals in the fate determination of pluripotent stem cells. Semin Cell Dev Biol. 32:98–106. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P and Rincón M: Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 61:8851–8858. 2001.PubMed/NCBI

73 

Desbourdes L, Javary J, Charbonnier T, Ishac N, Bourgeais J, Iltis A, Chomel JC, Turhan A, Guilloton F, Tarte K, et al: Alteration analysis of bone marrow mesenchymal stromal cells from de novo acute myeloid leukemia patients at diagnosis. Stem Cells Dev. 26:709–722. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K, Pangalis GA and Papadaki HA: Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev. 22:1329–1341. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Ogden A, Rida PC, Knudsen BS, Kucuk O and Aneja R: Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367:89–92. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H, Li J, Cheng J, Chen X, Zhou L and Li Z: AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncol Rep 42: 1035-1046, 2019.
APA
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., & Li, Z. (2019). AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncology Reports, 42, 1035-1046. https://doi.org/10.3892/or.2019.7237
MLA
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., Li, Z."AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance". Oncology Reports 42.3 (2019): 1035-1046.
Chicago
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., Li, Z."AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance". Oncology Reports 42, no. 3 (2019): 1035-1046. https://doi.org/10.3892/or.2019.7237
Copy and paste a formatted citation
x
Spandidos Publications style
Li H, Li J, Cheng J, Chen X, Zhou L and Li Z: AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncol Rep 42: 1035-1046, 2019.
APA
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., & Li, Z. (2019). AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance. Oncology Reports, 42, 1035-1046. https://doi.org/10.3892/or.2019.7237
MLA
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., Li, Z."AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance". Oncology Reports 42.3 (2019): 1035-1046.
Chicago
Li, H., Li, J., Cheng, J., Chen, X., Zhou, L., Li, Z."AML‑derived mesenchymal stem cells upregulate CTGF expression through the BMP pathway and induce K562‑ADM fusiform transformation and chemoresistance". Oncology Reports 42, no. 3 (2019): 1035-1046. https://doi.org/10.3892/or.2019.7237
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team