|
1
|
Rajkumar SV: Myeloma today: Disease
definitions and treatment advances. Am J Hematol. 91:90–100. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Landgren O, Kyle RA, Pfeiffer RM, Katzmann
JA, Caporaso NE, Hayes RB, Dispenzieri A, Kumar S, Clark RJ, Baris
D, et al: Monoclonal gammopathy of undetermined significance (MGUS)
consistently precedes multiple myeloma: A prospective study. Blood.
113:5412–5417. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kyle RA, Durie BG, Rajkumar SV, Landgren
O, Blade J, Merlini G, Kröger N, Einsele H, Vesole DH, Dimopoulos
M, et al: Monoclonal gammopathy of undetermined significance (MGUS)
and smoldering (asymptomatic) multiple myeloma: IMWG consensus
perspectives risk factors for progression and guidelines for
monitoring and management. Leukemia. 24:1121–1127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kunisaki Y, Bruns I, Scheiermann C, Ahmed
J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, et al:
Arteriolar niches maintain haematopoietic stem cell quiescence.
Nature. 502:637–643. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Manier S, Sacco A, Leleu X, Ghobrial IM
and Roccaro AM: Bone marrow microenvironment in multiple myeloma
progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Crisan M and Dzierzak E: The many faces of
hematopoietic stem cell heterogeneity. Development. 143:4571–4581.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pang WW, Schrier SL and Weissman IL:
Age-associated changes in human hematopoietic stem cells. Semin
Hematol. 54:39–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shiozawa Y, Pedersen EA, Havens AM, Jung
Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, et al:
Human prostate cancer metastases target the hematopoietic stem cell
niche to establish footholds in mouse bone marrow. J Clin Invest.
121:1298–1312. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Corcoran KE, Patel N and Rameshwar P:
Stromal derived growth factor-1alpha: Another mediator in
neural-emerging immune system through Tac1 expression in bone
marrow stromal cells. J Immunol. 178:2075–2082. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shiozawa Y, Pedersen EA, Patel LR, Ziegler
AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and
Taichman RS: GAS6/AXL axis regulates prostate cancer invasion,
proliferation, and survival in the bone marrow niche. Neoplasia.
12:116–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chinni SR, Sivalogan S, Dong Z, Filho JC,
Deng X, Bonfil RD and Cher ML: CXCL12/CXCR4 signaling activates
Akt-1 and MMP-9 expression in prostate cancer cells: The role of
bone microenvironment-associated CXCL12. Prostate. 66:32–48. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kawano Y, Moschetta M, Manier S, Glavey S,
Görgün GT, Roccaro AM, Anderson KC and Ghobrial IM: Targeting the
bone marrow microenvironment in multiple myeloma. Immunol Rev.
263:160–172. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ribatti D, Nico B and Vacca A: Importance
of the bone marrow microenvironment in inducing the angiogenic
response in multiple myeloma. Oncogene. 25:4257–4266. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ghobrial IM: Myeloma as a model for the
process of metastasis: Implications for therapy. Blood. 120:20–30.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Anderson KC and Carrasco RD: Pathogenesis
of myeloma. Annu Rev Pathol. 6:249–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Abdi J, Chen G and Chang H: Drug
resistance in multiple myeloma: Latest findings and new concepts on
molecular mechanisms. Oncotarget. 4:2186–2207. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bianchi G and Munshi NC: Pathogenesis
beyond the cancer clone(s) in multiple myeloma. Blood.
125:3049–3058. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ribatti D, Moschetta M and Vacca A:
Microenvironment and multiple myeloma spread. Thromb Res. 133
(Suppl 2):S102–S106. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lemaire M, Deleu S, De Bruyne E, Van
Valckenborgh E, Menu E and Vanderkerken K: The microenvironment and
molecular biology of the multiple myeloma tumor. Adv Cancer Res.
110:19–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu Q, Zhou X, Huang D, Ji Y and Kang F:
IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting
JAK2 and RANKL activity in vitro. Cell Physiol Biochem.
41:1360–1369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hideshima T, Chauhan D, Schlossman R,
Richardson P and Anderson KC: The role of tumor necrosis factor
alpha in the pathophysiology of human multiple myeloma: Therapeutic
applications. Oncogene. 20:4519–4527. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang J, Hendrix A, Hernot S, Lemaire M, De
Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken
K and Menu E: Bone marrow stromal cell-derived exosomes as
communicators in drug resistance in multiple myeloma cells. Blood.
124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Roccaro AM, Sacco A, Maiso P, Azab AK, Tai
YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al: BM
mesenchymal stromal cell-derived exosomes facilitate multiple
myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang J, De Veirman K, Faict S, Frassanito
MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes
establish a favourable bone marrow microenvironment with enhanced
angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kumar S, Gertz MA, Dispenzieri A, Lacy MQ,
Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR and
Rajkumar SV: Prognostic value of bone marrow angiogenesis in
patients with multiple myeloma undergoing high-dose therapy. Bone
Marrow Transplant. 34:235–239. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Moschetta M, Mishima Y, Kawano Y, Manier
S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I,
et al: Targeting vasculogenesis to prevent progression in multiple
myeloma. Leukemia. 30:1103–1115. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vacca A and Ribatti D: Angiogenesis and
vasculogenesis in multiple myeloma: Role of inflammatory cells.
Recent Results Cancer Res. 183:87–95. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Andreuzzi E, Colladel R, Pellicani R,
Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De
Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2
is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol.
64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ria R, Reale A, De Luisi A, Ferrucci A,
Moschetta M and Vacca A: Bone marrow angiogenesis and progression
in multiple myeloma. Am J Blood Res. 1:76–89. 2011.PubMed/NCBI
|
|
31
|
Vacca A, Ria R, Ribatti D, Semeraro F,
Djonov V, Di Raimondo F and Dammacco F: A paracrine loop in the
vascular endothelial growth factor pathway triggers tumor
angiogenesis and growth in multiple myeloma. Haematologica.
88:176–185. 2003.PubMed/NCBI
|
|
32
|
Menu E, Kooijman R, Van Valckenborgh E,
Asosingh K, Bakkus M, Van Camp B and Vanderkerken K: Specific roles
for the PI3K and the MEK-ERK pathway in IGF-1-stimulated
chemotaxis, VEGF secretion and proliferation of multiple myeloma
cells: Study in the 5T33MM model. Br J Cancer. 90:1076–1083. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tanaka Y, Abe M, Hiasa M, Oda A, Amou H,
Nakano A, Takeuchi K, Kitazoe K, Kido S, Inoue D, et al: Myeloma
cell-osteoclast interaction enhances angiogenesis together with
bone resorption: A role for vascular endothelial cell growth factor
and osteopontin. Clin Cancer Res. 13:816–823. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cackowski FC, Anderson JL, Patrene KD,
Choksi RJ, Shapiro SD, Windle JJ, Blair HC and Roodman GD:
Osteoclasts are important for bone angiogenesis. Blood.
115:140–149. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hideshima T, Mitsiades C, Tonon G,
Richardson PG and Anderson KC: Understanding multiple myeloma
pathogenesis in the bone marrow to identify new therapeutic
targets. Nat Rev Cancer. 7:585–598. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Roccaro AM, Hideshima T, Raje N, Kumar S,
Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, et
al: Bortezomib mediates antiangiogenesis in multiple myeloma via
direct and indirect effects on endothelial cells. Cancer Res.
66:184–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bonewald LF: The amazing osteocyte. J Bone
Miner Res. 26:229–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bataille R, Chappard D, Marcelli C,
Dessauw P, Sany J, Baldet P and Alexandre C: Mechanisms of bone
destruction in multiple myeloma: The importance of an unbalanced
process in determining the severity of lytic bone disease. J Clin
Oncol. 7:1909–1914. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Delgado-Calle J, Bellido T and Roodman GD:
Role of osteocytes in multiple myeloma bone disease. Curr Opin
Support Palliat Care. 8:407–413. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kristensen IB, Christensen JH, Lyng MB,
Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ and Abildgaard N:
Expression of osteoblast and osteoclast regulatory genes in the
bone marrow microenvironment in multiple myeloma: Only
up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with
lytic bone disease. Leuk Lymphoma. 55:911–919. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Walker RE, Lawson MA, Buckle CH, Snowden
JA and Chantry AD: Myeloma bone disease: Pathogenesis, current
treatments and future targets. Br Med Bull. 111:117–138. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Giuliani N, Ferretti M, Bolzoni M, Storti
P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L,
Neri A, et al: Increased osteocyte death in multiple myeloma
patients: Role in myeloma-induced osteoclast formation. Leukemia.
26:1391–1401. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ehrlich LA, Chung HY, Ghobrial I, Choi SJ,
Morandi F, Colla S, Rizzoli V, Roodman GD and Giuliani N: IL-3 is a
potential inhibitor of osteoblast differentiation in multiple
myeloma. Blood. 106:1407–1414. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee JW, Chung HY, Ehrlich LA, Jelinek DF,
Callander NS, Roodman GD and Choi SJ: IL-3 expression by myeloma
cells increases both osteoclast formation and growth of myeloma
cells. Blood. 103:2308–2315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Abe M, Hiura K, Wilde J, Shioyasono A,
Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, et
al: Osteoclasts enhance myeloma cell growth and survival via
cell-cell contact: A vicious cycle between bone destruction and
myeloma expansion. Blood. 104:2484–2491. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Croucher PI, McDonald MM and Martin TJ:
Bone metastasis: The importance of the neighbourhood. Nat Rev
Cancer. 16:373–386. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ehrlich LA and Roodman GD: The role of
immune cells and inflammatory cytokines in Paget's disease and
multiple myeloma. Immunol Rev. 208:252–266. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Emery JG, McDonnell P, Burke MB, Deen KC,
Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, et
al: Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J
Biol Chem. 273:14363–14367. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Heath DJ, Vanderkerken K, Cheng X,
Gallagher O, Prideaux M, Murali R and Croucher PI: An
osteoprotegerin-like peptidomimetic inhibits osteoclastic bone
resorption and osteolytic bone disease in myeloma. Cancer Res.
67:202–208. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lawson MA, McDonald MM, Kovacic N, Hua
Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C,
Pettitt JA, et al: Osteoclasts control reactivation of dormant
myeloma cells by remodelling the endosteal niche. Nat Commun.
6:89832015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
McDonald MM, Fairfield H, Falank C and
Reagan MR: Adipose, bone, and myeloma: Contributions from the
microenvironment. Calcif Tissue Int. 100:433–448. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fu R, Liu H, Zhao S, Wang Y, Li L, Gao S,
Ruan E, Wang G, Wang H, Song J and Shao Z: Osteoblast inhibition by
chemokine cytokine ligand3 in myeloma-induced bone disease. Cancer
Cell Int. 14:1322014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gavriatopoulou M, Dimopoulos MA,
Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M and Terpos E:
Dickkopf-1: A suitable target for the management of myeloma bone
disease. Expert Opin Ther Targets. 13:839–848. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moester MJ, Papapoulos SE, Löwik CW and
van Bezooijen RL: Sclerostin: Current knowledge and future
perspectives. Calcif Tissue Int. 87:99–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhou F, Meng S, Song H and Claret FX:
Dickkopf-1 is a key regulator of myeloma bone disease:
Opportunities and challenges for therapeutic intervention. Blood
Rev. 27:261–267. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Oshima T, Abe M, Asano J, Hara T, Kitazoe
K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, et al:
Myeloma cells suppress bone formation by secreting a soluble Wnt
inhibitor, sFRP-2. Blood. 106:3160–3165. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Delgado-Calle J, Anderson J, Cregor MD,
Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin
LI, Roodman GD and Bellido T: Bidirectional notch signaling and
osteocyte-derived factors in the bone marrow microenvironment
promote tumor cell proliferation and bone destruction in multiple
myeloma. Cancer Res. 76:1089–1100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Reagan MR, Liaw L, Rosen CJ and Ghobrial
IM: Dynamic interplay between bone and multiple myeloma: Emerging
roles of the osteoblast. Bone. 75:161–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yaccoby S, Wezeman MJ, Zangari M, Walker
R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G and
Epstein J: Inhibitory effects of osteoblasts and increased bone
formation on myeloma in novel culture systems and a myelomatous
mouse model. Haematologica. 91:192–199. 2006.PubMed/NCBI
|
|
60
|
Mitsiades CS, McMillin DW, Klippel S,
Hideshima T, Chauhan D, Richardson PG, Munshi NC and Anderson KC:
The role of the bone marrow microenvironment in the pathophysiology
of myeloma and its significance in the development of more
effective therapies. Hematol Oncol Clin North Am. 21:1007–1034,
vii-viii. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shipman CM and Croucher PI:
Osteoprotegerin is a soluble decoy receptor for tumor necrosis
factor-related apoptosis-inducing ligand/Apo2 ligand and can
function as a paracrine survival factor for human myeloma cells.
Cancer Res. 63:912–916. 2003.PubMed/NCBI
|
|
62
|
Scheller J and Rose-John S: Interleukin-6
and its receptor: From bench to bedside. Med Microbiol Immunol.
195:173–183. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Suchi K, Fujiwara H, Okamura S, Okamura H,
Umehara S, Todo M, Furutani A, Yoneda M, Shiozaki A, Kubota T, et
al: Overexpression of Interleukin-6 suppresses cisplatin-induced
cytotoxicity in esophageal squamous cell carcinoma cells.
Anticancer Res. 31:67–75. 2011.PubMed/NCBI
|
|
64
|
Hong DS, Angelo LS and Kurzrock R:
Interleukin-6 and its receptor in cancer: Implications for
translational therapeutics. Cancer. 110:1911–1928. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kawano M, Hirano T, Matsuda T, Taga T,
Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, et al:
Autocrine generation and requirement of BSF-2/IL-6 for human
multiple myelomas. Nature. 332:83–85. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rosean TR, Tompkins VS, Olivier AK,
Sompallae R, Norian LA, Morse HC III, Waldschmidt TJ and Janz S:
The tumor microenvironment is the main source of IL-6 for plasma
cell tumor development in mice. Leukemia. 29:233–237. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Matthes T, Manfroi B, Zeller A,
Dunand-Sauthier I, Bogen B and Huard B: Autocrine amplification of
immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone
marrow. Leukemia. 29:1882–1890. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rosean TR, Tompkins VS, Tricot G, Holman
CJ, Olivier AK, Zhan F and Janz S: Preclinical validation of
interleukin 6 as a therapeutic target in multiple myeloma. Immunol
Res. 59:188–202. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Qi C, Tian S, Wang J, Ma H, Qian K and
Zhang X: Co-expression of CD40/CD40L on XG1 multiple myeloma cells
promotes IL-6 autocrine function. Cancer Invest. 33:6–15. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Westendorf JJ, Ahmann GJ, Armitage RJ,
Spriggs MK, Lust JA, Greipp PR, Katzmann JA and Jelinek DF: CD40
expression in malignant plasma cells. Role in stimulation of
autocrine IL-6 secretion by a human myeloma cell line. J Immunol.
152:117–128. 1994.PubMed/NCBI
|
|
71
|
Dinarello CA: Interleukin-1 in the
pathogenesis and treatment of inflammatory diseases. Blood.
117:3720–3732. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tu Y, Gardner A and Lichtenstein A: The
phosphatidylinositol 3-kinase/AKT kinase pathway in multiple
myeloma plasma cells: Roles in cytokine-dependent survival and
proliferative responses. Cancer Res. 60:6763–6770. 2000.PubMed/NCBI
|
|
73
|
Hideshima T, Nakamura N, Chauhan D and
Anderson KC: Biologic sequelae of interleukin-6 induced PI3-K/Akt
signaling in multiple myeloma. Oncogene. 20:5991–6000. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hsu JH, Shi Y, Hu L, Fisher M, Franke TF
and Lichtenstein A: Role of the AKT kinase in expansion of multiple
myeloma clones: Effects on cytokine-dependent proliferative and
survival responses. Oncogene. 21:1391–1400. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sansone P and Bromberg J: Targeting the
interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol.
30:1005–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Matthes T, Manfroi B and Huard B:
Revisiting IL-6 antagonism in multiple myeloma. Crit Rev Oncol
Hematol. 105:1–4. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Monaghan KA, Khong T, Burns CJ and Spencer
A: The novel JAK inhibitor CYT387 suppresses multiple signalling
pathways, prevents proliferation and induces apoptosis in
phenotypically diverse myeloma cells. Leukemia. 25:1891–1899. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chauhan D, Kharbanda S, Ogata A, Urashima
M, Teoh G, Robertson M, Kufe DW and Anderson KC: Interleukin-6
inhibits Fas-induced apoptosis and stress-activated protein kinase
activation in multiple myeloma cells. Blood. 89:227–234.
1997.PubMed/NCBI
|
|
79
|
Burger R: Impact of interleukin-6 in
hematological malignancies. Transfus Med Hemother. 40:336–343.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Orlowski RZ, Gercheva L, Williams C,
Sutherland H, Robak T, Masszi T, Goranova-Marinova V, Dimopoulos
MA, Cavenagh JD, Špička I, et al: A phase 2, randomized,
double-blind, placebo-controlled study of siltuximab (anti-IL-6
mAb) and bortezomib versus bortezomib alone in patients with
relapsed or refractory multiple myeloma. Am J Hematol. 90:42–49.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
San-Miguel J, Bladé J, Shpilberg O,
Grosicki S, Maloisel F, Min CK, Polo Zarzuela M, Robak T, Prasad
SV, Tee Goh Y, et al: Phase 2 randomized study of
bortezomib-melphalan-prednisone with or without siltuximab
(anti-IL-6) in multiple myeloma. Blood. 123:4136–4142. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Voorhees PM, Manges RF, Sonneveld P,
Jagannath S, Somlo G, Krishnan A, Lentzsch S, Frank RC, Zweegman S,
Wijermans PW, et al: A phase 2 multicentre study of siltuximab, an
anti-interleukin-6 monoclonal antibody, in patients with relapsed
or refractory multiple myeloma. Br J Haematol. 161:357–366. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Guo DJ, Han JS, Li YS, Liu ZS, Lu SY and
Ren HL: In vitro and in vivo antitumor effects of the recombinant
immunotoxin IL6(T23)-PE38KDEL in multiple myeloma. Oncol Lett.
4:311–318. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Younes A, Romaguera J, Fanale M,
McLaughlin P, Hagemeister F, Copeland A, Neelapu S, Kwak L, Shah J,
de Castro Faria S, et al: Phase I study of a novel oral Janus
kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma:
Evidence of clinical and biologic activity in multiple lymphoma
subtypes. J Clin Oncol. 30:4161–4167. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Garcia-Bates TM, Bernstein SH and Phipps
RP: Peroxisome proliferator-activated receptor gamma overexpression
suppresses growth and induces apoptosis in human multiple myeloma
cells. Clin Cancer Res. 14:6414–6425. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sprynski AC, Hose D, Caillot L, Réme T,
Shaughnessy JD Jr, Barlogie B, Seckinger A, Moreaux J, Hundemer M,
Jourdan M, et al: The role of IGF-1 as a major growth factor for
myeloma cell lines and the prognostic relevance of the expression
of its receptor. Blood. 113:4614–4626. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV,
Sonkin D, et al: The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature.
483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mitsiades CS, Mitsiades NS, McMullan CJ,
Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D,
Joseph M, Libermann TA, et al: Inhibition of the insulin-like
growth factor receptor-1 tyrosine kinase activity as a therapeutic
strategy for multiple myeloma, other hematologic malignancies, and
solid tumors. Cancer Cell. 5:221–230. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Bieghs L, Lub S, Fostier K, Maes K, Van
Valckenborgh E, Menu E, Johnsen HE, Overgaard MT, Larsson O,
Axelson M, et al: The IGF-1 receptor inhibitor picropodophyllin
potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget.
5:11193–11208. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kuhn DJ, Berkova Z, Jones RJ, Woessner R,
Bjorklund CC, Ma W, Davis RE, Lin P, Wang H, Madden TL, Wei C, et
al: Targeting the insulin-like growth factor-1 receptor to overcome
bortezomib resistance in preclinical models of multiple myeloma.
Blood. 120:3260–3270. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bieghs L, Brohus M, Kristensen IB,
Abildgaard N, Bøgsted M, Johnsen HE, Conover CA, De Bruyne E,
Vanderkerken K, Overgaard MT and Nyegaard M: Abnormal IGF-binding
protein profile in the bone marrow of multiple myeloma patients.
PLoS One. 11:e01542562016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jelinek DF, Witzig TE and Arendt BK: A
role for insulin-like growth factor in the regulation of
IL-6-responsive human myeloma cell line growth. J Immunol.
159:487–496. 1997.PubMed/NCBI
|
|
93
|
Georgii-Hemming P, Wiklund HJ, Ljunggren O
and Nilsson K: Insulin-like growth factor I is a growth and
survival factor in human multiple myeloma cell lines. Blood.
88:2250–2258. 1996.PubMed/NCBI
|
|
94
|
Chapuis N, Tamburini J, Cornillet-Lefebvre
P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N,
Dreyfus F, et al: Autocrine IGF-1/IGF-1R signaling is responsible
for constitutive PI3K/Akt activation in acute myeloid leukemia:
Therapeutic value of neutralizing anti-IGF-1R antibody.
Haematologica. 95:415–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chiron D, Maiga S, Surget S, Descamps G,
Gomez-Bougie P, Traore S, Robillard N, Moreau P, Le Gouill S,
Bataille R, et al: Autocrine insulin-like growth factor 1 and stem
cell factor but not interleukin 6 support self-renewal of human
myeloma cells. Blood Cancer J. 3:e1202013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang EW, Xue SJ, Li XY, Xu SW, Cheng JD,
Zheng JX, Shi H, Lv GL, Li ZG, Li Y, et al: EEN regulates the
proliferation and survival of multiple myeloma cells by
potentiating IGF-1 secretion. Biochem Biophys Res Commun.
447:271–277. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Vishwamitra D, George SK, Shi P, Kaseb AO
and Amin HM: Type I insulin-like growth factor receptor signaling
in hematological malignancies. Oncotarget. 8:1814–1844. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ge NL and Rudikoff S: Insulin-like growth
factor I is a dual effector of multiple myeloma cell growth. Blood.
96:2856–2861. 2000.PubMed/NCBI
|
|
99
|
Bieghs L, Johnsen HE, Maes K, Menu E, Van
Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken
K and De Bruyne E: The insulin-like growth factor system in
multiple myeloma: Diagnostic and therapeutic potential. Oncotarget.
7:48732–48752. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vanderkerken K, Asosingh K, Braet F, Van
Riet I and Van Camp B: Insulin-like growth factor-1 acts as a
chemoattractant factor for 5T2 multiple myeloma cells. Blood.
93:235–241. 1999.PubMed/NCBI
|
|
101
|
Asosingh K, Günthert U, Bakkus MH, De
Raeve H, Goes E, Van Riet I, Van Camp B and Vanderkerken K: In vivo
induction of insulin-like growth factor-I receptor and CD44v6
confers homing and adhesion to murine multiple myeloma cells.
Cancer Res. 60:3096–3104. 2000.PubMed/NCBI
|
|
102
|
Ogata A, Chauhan D, Urashima M, Teoh G,
Treon SP and Anderson KC: Blockade of mitogen-activated protein
kinase cascade signaling in interleukin 6-independent multiple
myeloma cells. Clin Cancer Res. 3:1017–1022. 1997.PubMed/NCBI
|
|
103
|
Podar K and Anderson KC: The
pathophysiologic role of VEGF in hematologic malignancies:
Therapeutic implications. Blood. 105:1383–1395. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Andersen NF, Vogel U, Klausen TW, Gimsing
P, Gregersen H, Abildgaard N and Vangsted AJ: Vascular endothelial
growth factor (VEGF) gene polymorphisms may influence the efficacy
of thalidomide in multiple myeloma. Int J Cancer. 131:E636–E642.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Senger DR, Galli SJ, Dvorak AM, Perruzzi
CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular
permeability factor that promotes accumulation of ascites fluid.
Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Weis SM and Cheresh DA: Tumor
angiogenesis: Molecular pathways and therapeutic targets. Nat Med.
17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Asosingh K, De Raeve H, Menu E, Van Riet
I, Van Marck E, Van Camp B and Vanderkerken K: Angiogenic switch
during 5T2MM murine myeloma tumorigenesis: Role of CD45
heterogeneity. Blood. 103:3131–3137. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bhutani M, Turkbey B, Tan E, Kemp TJ,
Pinto LA, Berg AR, Korde N, Minter AR, Weiss BM, Mena E, et al:
Bone marrow angiogenesis in myeloma and its precursor disease: A
prospective clinical trial. Leukemia. 28:413–416. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hose D, Moreaux J, Meissner T, Seckinger
A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos
J, et al: Induction of angiogenesis by normal and malignant plasma
cells. Blood. 114:128–143. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Taylor RM, Kashima TG, Knowles HJ and
Athanasou NA: VEGF, FLT3 ligand, PlGF and HGF can substitute for
M-CSF to induce human osteoclast formation: Implications for giant
cell tumour pathobiology. Lab Invest. 92:1398–1406. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Terpos E, Christoulas D, Gavriatopoulou M
and Dimopoulos MA: Mechanisms of bone destruction in multiple
myeloma. Eur J Cancer Care (Engl). 26:2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Neviani P and Fabbri M: Exosomic microRNAs
in the tumor microenvironment. Front Med (Lausanne).
2:472015.PubMed/NCBI
|
|
113
|
Wang X, Lu H, Li T, Yu L, Liu G, Peng X
and Zhao J: Krüppel-like factor 8 promotes tumorigenic mammary stem
cell induction by targeting miR-146a. Am J Cancer Res. 3:356–373.
2013.PubMed/NCBI
|
|
114
|
Corrado C, Raimondo S, Chiesi A, Ciccia F,
De Leo G and Alessandro R: Exosomes as intercellular signaling
organelles involved in health and disease: Basic science and
clinical applications. Int J Mol Sci. 14:5338–5366. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Raimondo S, Corrado C, Raimondi L, De Leo
G and Alessandro R: Role of extracellular vesicles in hematological
malignancies. Biomed Res Int. 2015:8216132015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zijlstra A and Di Vizio D: Size matters in
nanoscale communication. Nat Cell Biol. 20:228–230. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Amodio N, Di Martino MT, Neri A,
Tagliaferri P and Tassone P: Non-coding RNA: A novel opportunity
for the personalized treatment of multiple myeloma. Expert Opin
Biol Ther. 13 (Suppl 1):S125–S137. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ohtsuka M, Ling H, Doki Y, Mori M and
Calin GA: MicroRNA processing and human cancer. J Clin Med.
4:1651–1667. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
De Veirman K, Wang J, Xu S, Leleu X, Himpe
E, Maes K, De Bruyne E, Van Valckenborgh E, Vanderkerken K, Menu E
and Van Riet I: Induction of miR-146a by multiple myeloma cells in
mesenchymal stromal cells stimulates their pro-tumoral activity.
Cancer Lett. 377:17–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Forloni M, Dogra SK, Dong Y, Conte D Jr,
Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR and Wajapeyee N:
miR-146a promotes the initiation and progression of melanoma by
activating Notch signaling. Elife. 3:e014602014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Raimondi L, De Luca A, Amodio N, Manno M,
Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci
O, et al: Involvement of multiple myeloma cell-derived exosomes in
osteoclast differentiation. Oncotarget. 6:13772–13789. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Raimondo S, Saieva L, Vicario E, Pucci M,
Toscani D, Manno M, Raccosta S, Giuliani N and Alessandro R:
Multiple myeloma-derived exosomes are enriched of amphiregulin
(AREG) and activate the epidermal growth factor pathway in the bone
microenvironment leading to osteoclastogenesis. J Hematol Oncol.
12:22019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Faict S, Muller J, De Veirman K, De Bruyne
E, Maes K, Vrancken L, Heusschen R, De Raeve H, Schots R,
Vanderkerken K, et al: Exosomes play a role in multiple myeloma
bone disease and tumor development by targeting osteoclasts and
osteoblasts. Blood Cancer J. 8:1052018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kocemba KA, van Andel H, de Haan-Kramer A,
Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M and Pals ST: The
hypoxia target adrenomedullin is aberrantly expressed in multiple
myeloma and promotes angiogenesis. Leukemia. 27:1729–1737. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Umezu T, Tadokoro H, Azuma K, Yoshizawa S,
Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic
multiple myeloma cells enhances angiogenesis by targeting
factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lai RC, Chen TS and Lim SK: Mesenchymal
stem cell exosome: A novel stem cell-based therapy for
cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tomasoni S, Longaretti L, Rota C, Morigi
M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G and Benigni A:
Transfer of growth factor receptor mRNA via exosomes unravels the
regenerative effect of mesenchymal stem cells. Stem Cells Dev.
22:772–780. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chi Y, Yin X, Sun K, Feng S, Liu J, Chen
D, Guo C and Wu Z: Redox-sensitive and hyaluronic acid
functionalized liposomes for cytoplasmic drug delivery to
osteosarcoma in animal models. J Control Release. 261:113–125.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Becker PS, Gooley TA, Green DJ, Burwick N,
Kim TY, Kojouri K, Inoue Y, Moore DJ, Nelli E, Dennie T and
Bensinger WI: A phase 2 study of bortezomib, cyclophosphamide,
pegylated liposomal doxorubicin and dexamethasone for newly
diagnosed multiple myeloma. Blood Cancer J. 6:e4222016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Umezu T, Imanishi S, Azuma K, Kobayashi C,
Yoshizawa S, Ohyashiki K and Ohyashiki JH: Replenishing exosomes
from older bone marrow stromal cells with miR-340 inhibits
myeloma-related angiogenesis. Blood Adv. 1:812–823. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hideshima T, Mitsiades C, Akiyama M,
Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi
NC, Mitsiades N and Anderson KC: Molecular mechanisms mediating
antimyeloma activity of proteasome inhibitor PS-341. Blood.
101:1530–1534. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chauhan D, Singh A, Brahmandam M, Podar K,
Hideshima T, Richardson P, Munshi N, Palladino MA and Anderson KC:
Combination of proteasome inhibitors bortezomib and NPI-0052
trigger in vivo synergistic cytotoxicity in multiple myeloma.
Blood. 111:1654–1664. 2008. View Article : Google Scholar : PubMed/NCBI
|